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This book is concerned with the automatic control of

guided missiles. The problems associated with the automatic

control of guided missiles of various classes are solved by

the application of engineering design methods developed by the

theory of automatic control for linear and nonlinear dynamic

systems.

Various principles are considered for obtaining control

signals using different methods of tracking. The fundamen-

tals of missile control dynamics and typical control sys-

tems are described. Analytical expressions are presented for

designing tracking systems and for determining the errors of

these systems.

The book is designed to serve as a textbook for univer-

sity students. At the same time it will be useful to engi-

neers and technicians who specialize in the field of the

automatic con trol of guided missiles. ___

L

Numbers given in the margin indicate the pagination in the original foreign

text.
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NASA TT F-9378

PREFACE

At the present time, missiles of the most diverse types have control sys-

tems which improve their firing accuracy. The control system forms a closed

loop for the control signals and for the feedback signals. This loop is char-

acteristic of automatic control systems whose theory has been developed with

sufficient completeness. In evaluating the effectiveness of any control sys-

tem_ the nature of the dynamic processes which take place in it is of paramount

significance. The methods developed in the theory of automatic control make it

possible to solve problems associated with the analysis of missile control sys-

tems.

The book presents the theoretical principles associated with automatic

control systems. The first two chapters present general information on guided

missiles and consider briefly the basic mathematical methods necessary to solve

the problems of automatic control.

Chapters 3-7 present methods for obtaining control signals during various

methods of tracking missiles and the transformation and amplification of these

signals. Finally, the driving mechanisms for the control elements of missiles

are described, based on data published in the Soviet and foreign literature.

Chapters 8-12 generalize the problems associated with the dynamics of

missile motion with respect to its center of gravity_ as well as the dyns_mics

of controlling the missile's center of gravity with respect to a given tra-

jectory.

Chapters 13-15 analyze the motion of the missile's center of gravity for

different methods of tracking; the purpose of this analysis is to obtain ex-

pressions for the miss distance of a missile.

The concluding Chapter 16 describes integrated missile control systems

and the method of establishing their accuracy.

Specific examples of control systems are taken from the foreign litera-

ture.

Chapters i, 8_ ii_ 12 and sections 1-5 of Chapter 23 sections 1-3 of

Chapter 9 and sections 1-9 of Chapter i0 were written by Dobrolenskiy. Chap-

ters 3_ 4_ 6_ 7 and sections 1-8 of Chapter 5 were written by Ivanova. Chap-

ters 13-16_ section 9 of Chapter 5 and section i0 of Chapter i0 were written

by Pospelov; section 6 of Chapter 2_ section 4 of Chapter 9 and section 9 of

Chapter i0 were written by Pospelov in collaboration with N. K. Bodunov.

The authors request that reader comments concerning this work be ad-

dressed to: Moscow I-51 Petrovka_ 24, 0borongiz.

L
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CHAPTERi. GENERAL-_ORMATiONONGUIDEDMISSILES L

Section I.i. Basic Concepts and Definitions

in the last decade the rapid development of automation, electrical engi-

neering and other scientific and engineering disciplines has produced a new

powerful weapon--the guided missile. Guided missiles were first used during

World War II.

Every missile_ whether it is controlled or not, is fired from a special

launching device. In the case of an artillery shell, this launching device

is the gun barrel, for an aerial bomb it is the bomb shackle_ while for a

rocket it is a launching pad, etc. The firing accuracy for unguided missiles

is determined by the accuracy of air_ng, i.e._ the accuracy in computing and

realizing the required direction of the missile during firing. _aile aiming3

insofar as possible, all of the factors are considered which determine the

impact point of the missile: the velocity of the target and of the missile_

wind velocity, temperature and density of the air along the trajectory, etc.

Nevertheless, in the majority of cases the firing accuracy for unguided mis-

siles is insufficient. The impact errors may be classified in the following

manner:

(i) sighting errors; these include methodical errors which occur because

most of the sights give only an approximate solution to the problem of missile

impact at the target. This class also includes instrument errors due to im-

perfections in sights;

(2) random errors due to many reasons of a random nature with respect

to the sighting process; these include errors due to unavoidable spread in

the parameters of the missiles and of their launching ramps, human error and

unaccounted external factors (change in wind_ temperature and air density),

which affect the missile after it is fired and also the possible maneuvers

of the target after firing, which differ from those assumed during sighting.

The frequent insufficient accuracy of unguided missiles may be confirmed

by the following ex_aples:

(I) the low probability with which antiaircraft shells hit an airplane;

(2) low effectiveness of the gun armament of an airplane; for this rea-

son the firing from one airplane to another is effective only over a short

distance;

(3) low accuracy of bombing surface targets from an airplane; to destroy

a small target, e.g., a bridge, it is necessary to drop several tens and some-

times several hundreds of bombs. _



_.Yf_enguided missiles are used, the firing accuracy is substantially in-
creased. Wedefine a guided missile as one equipped with a control system which
can vary its trajectory after the missile has been launched. The control sys-
tem is defined to include all technical devices used to measure the trajectory
of the missile in order to increase its accuracy. This system includes various
sensing means_both on the missile and at the surface, which determine the mis-
sile's position in space with respect to its target_ methods of transforming and
transmitting signals as well as control elements which directly affect the
flight of the missile, in somecases the control system operates during the
entire period of flight, while in others it is operative only over definite
regions of the trajectory. The operation of the control system results in
sharp increase in firing accuracy.

Thus_ the combat effectiveness of guided missiles is substantially greater
than that of unguided missiles. However, the application of guidance makes
the missiles more complicated and increases their cost. But with the high ac-
curacy of guided missiles the total cost of hitting certain targets becomessub-
stantially less than is the case with unguided missiles.

The application of guided missiles also has certain additional advantages.
For example, the increase in firing accuracy makes it possible to hit targets
with guided missiles from substantially greater distances than with unguided
missiles. The large firing range makes it difficult to destroy launching pads
or objects (airplanes_ ships, mobile launchers) used to launch the guided mis-
siles. As a second example of the additional advantages of guided missiles_
we cite the possibility of decreasing the sighting accuracy in somecases_
which is particularly important whenfiring from airplanes. Finally, when we
fire on moving targets, the probability of hitting the targets with an unguided
missile may be so small that it is impossible to fire enough shots to hit it
while within range of the weapon. Dueto the higher probability of hitting a
target with a guided missile, the numberof shots and the time necessary to hit
a target are decreased.

As we have pointed out_ the control system changes the trajectory of the
missile to approach the target as closely as possible. To change the trajec-
tory of any body_ it is necessary to apply an additional force to this body_
which in our case we shall call the control force. Figure i.i_ e.g., shows
the trajectory of an uncontrolled (broken line) and controlled (solid line)
aircraft rocket. Due to sighting error, the uncontrolled missile would miss
the target (ship). The variation in the trajectory of the guided missi!e is
due to control force F produced by the control system. The methods of pro-
ducing the control force and their technical realization are considered in
section 1.2.

In spite of the diversity of technical methods used to control missiles,
we can nameonly three methods of control which differ in principle: self-
contained guidance, external guidance and homing guidance. These methods
differ in how and where signals are obtained to control the flight of the
missile.

In a system with self-contained guidance_ the control signals are de-
veloped by equipment contained entirely within the missile; after launching_

/7

/8
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Figure i.i. Variation in trajectory of missile under

action of controlling force.

this equipment receives no information from the point of launching or from the

target. In self-contained guidance systems_ two principles for obtaining the

control signals can be used. it is possible to compute the variation of cer-

tain parameters (velocity, slope of the trajectory, course_ etc.) with time;

these determine the trajectory of the missile as it moves to its target. The

functions of time which are obtained are introduced into the control system

of the missile in the form of a program. The true values of these parameters

are measured continuously by means of sensors, and the control system eliminates

the discrepancy between the programmed and actual parameters of motion. In par-

ticular, the missile may be assigned a definite flight trajectory, and the con-

trol system will keep the rr_ssile on this trajectory. Self-contained control

of this type is called programmed control.

However_ the self-contained guidance of a missile may be carried out by

using a different principle. Let us assume that the missile is equipped with

instruments to measure continuously its coordinates in space. This equipment

may be purely inertial or it may be inertial with compensation_ achieved by

using terrestrial or astronomical points of reference. The coordinates of'

this missile, which are established by this equipment_ are introduced into a

computer aboard the missile and form the control signals which guide the mis-

sile to its target when the coordinates of the latter are known.

This method of obtaining control signals differs from progra_aed control

by the absence of preassigned time functions at the input to the control sys-

tem. In this case_ a fixed trajectory is not assigned and a new trajectory

passing through the target is computed in each case, depending on the true

coordinates of the missile.

As we can see from this description_ the method of self-contained control

is applicable to missiles which are primarily concerned with fixed targets.

-_nen the target moves_ its future coordinates must be known beforehand with

sufficient accuracy for the period of missile flight.

3



in the method of external gui amce_ the coordinates of the target and of

the missile are measured continuously at the control point_ where signals are

developed for the control of the missile guidance system. This system must

vary the trajectory of the missile in such a _,_y that it meets its target, in

a variation of this method the control signals are formed on the missile itself_

but always by the energy received from the control point. It is clear that the

use of external guidance to obtain control signals does not_ in princip!e_

create any limitations on the movement of the target or of the control point.

In homing guidance the control signals are developed in the missile itself

by radiation or reflection of some form of energy by the target. This isolates

the target on the surrounding background. Thus; in homing guidance the coordi-

nates of the target with respect to the missile are measured by equipment on

the missile; and the control system uses these data to direct the missile to

its target.

These methods of missile guidance may be applied over the entire trajec-

tory of the missile or over part of it. in some cases different methods are

used over different regions of the trajectory. Thus_ over a large part of its

trajectory the missile may be subjected to self-contained control; while at

the final stage of flight homing guidance may be used to increase accuracy.

Finally, it is possible to have a case using different methods to control vari-

ous parameters of motion over the same region of the trajectory.

in concluding this section, we present the common classification of guided

m£ssiles associated with the launching point and the target point. The launch-

ing point determines the general conditions for using a missile. The location

of the target determines to some extent its nature and consequently the prac-

tical assignment of the missile. On the basis of this principle; guided mis-

siles are divided into the following classes:

(!) surface-to-surface missiles

(2) surface-to-air missiles

(3) air-to-surface missiles

(4) air-to-air missiles.

The first word in each class refers to the launching point of the missile,

while the last word refers to the location of the target. In this classifica-

tion the term "surface" refers to dry land as well as to water.

The need for the classification of guided missiles stems from the fact that

there is a very large number of different types of missiles in existence today.

Guided missiles are used in all forms of warfare and are designed to solve the

most diverse strategic and tactical problems. I To illustrate this we enumerate

various forms of guided missiles: 2

_V. i. Harisov and i.K. "Guided Missiles_"Kucherov_ Voyenizdat, 1959.

zxamp!es of specific missiles are presentea in section 1.4.

i



(i) ballistic rockets

(2) airplane missiles

(3) guided aerial bombs

(4) guided antiaircraft missiles

(5) aerial combat guided missiles

_ _" _ (antitank missiles, anti-(6) guided missiles used on the ba_le_le_d +_+ "

infantry missiles).

In addition to these guided missile types, whose trajectory passes through

the Earth's atmosphere_ there are several types of guided missiles which move

to their target underwater. These missiles are not considered in this book.

/10

Section i.2. Methods of Generating the Control Force

_ny moving body describes some trajectory in space whose form is deterr_ned

entirely by the initial conditions and by the forces acting on the body during

its motion. In the general case_ a missile in flight is subjected to the follow-

ing forces: thrust of the engine, force of gravity and aerodynamic forces. ! To

change the flight trajectory of a missile it is necessary to vary the magnitude

or direction of these forces (or both at the same time), because it is not possi-

ble to apply any other kind of a force to a missile in flight. _ne variation of

forces acting on a missile is performed by the control system, which supplies a

control force of desired magnitude and direction. This force must be perpendic-

ular to the flight trajectory and thus be situated in a plane in which the flight

trajectory of the r_ssile must be changed.

Because most of the guided missiles fly in the lower layers of the atmos-

phere _Ynere the aerodynamic forces play the principal role in developing a con-

trol force, we shall briefly consider the basic aerodynamic forms of missiles.

As a ru!e_ modern missiles travel at supersonic velocities. The frame of the

missile, thereforej usually has the form of a body of revolution with a sharp

nose. _ssiles may be without wings (but with stabilizers), with flat win_s_

_th cruciform wings or with annular wings. The various forms of missiles are

shown in figure 1.2.

A missile is said to be aerodynamically s_mmetric if the aerodynamic forces

do not vary when it rotates around its longitudinal axis. It is clear that wing-

less missiles and missiles with annular _ngs possess complete aerodynamic sym-

metry, in the case of a missile _ith cruciform wings_ the aerodynamic forces

vary insignificantly when the missile rotates around its longitudinal axis. The

greatest asymmetry is characteristic of missiles with plane wings.

fin principle the thrust is also an aerodynamic force, and it is listed sep-

arately merely to make our presentation more convenient.



' e,,.___------__=..

Figure 1.2. Aerody___amic form,s of missiles:

!--wingless_ 2--_,__,, plane wings; 3--with

cruciform wings; 4--_ith annular wings.

At the present time two methods are used to generate a control force:

(i) rotation of the missile frame around the center of gravity by means

of control surfaces;

(2) rotation of the wings with respect to the frame or use of an auxiliary

engine whose thrust is normal to the flight trajectory (direct method).

The first method is most cormmonly used. Its technical realization depends

on the aerodynamic shape of the missile. As a first example_ let us consider

the missile with cruciform wings for obtaining the control force. Figure 2.5

shows the forces acting on a missile in horizontal flight with constant veloc-

ity V. The sum of thrust P_ gravity G_ lift force of the wings and of fuselage

Y and of conzrol surface Yc and of drag X is equal to zero. The moment produced

by all forces with respect to the missile's center of gravity is also equal to

zero. Due to these conditions_ the missile undergoes a uniform rectilinear

flight. The lift force Y is produced by the angle of attack _ of the wings and

the fuselage_ while the lift force of the control surface is due to the angle of

attack of the control surface_ wmich is equal to 6 - _.

if the control surfaces of the missile are deflected by some angle A6 in

clockwise direction (fig. 1.4)_ the negative lift force of the control surface

will be increased by an amount AY c. The rr_ssile will begin to rotate around

its center of gravity and increase its angle of attack. This rotation wii__ stop

_gnen the angle of attack has increased by an amount A_ such that the increase

in the lift force of the wing and of the fuselage AY 1 again reduces the moment

of forces_ with respect to the missile's center of gravity_ to zero. However_

the projection of the forces along _he normal to the direction of flight will

no longer be equal to zero_ but will be equal to AY-AYc. 2 Since the area of the

_To si_@iify our presentation f_ight velocity V is assumed to be constant.

2We do not take into account the small increase in the projection of thrust P

on the normal to the flight trajectory.



wings is usually muchgreater than the area of the control surfaces_ the increase
in the lift force produced by the wing turns out to be muchgreater than the in-
crease in the lift force of the control surfaces. It is precisely this increase
in _he lift force of the wing AY (which may exceed weight G of the missile by .........
several times and which is directed perpendicularly to the missile flight ve-
locity vector), that is the control force in our case. By meansof this force,
which is obtained by the rotation of the missile with respect to its center of
gravity, the flight trajectory of a plane-winged missile is changed in the ver-
tical plane.

JY

]Y

X eg P_ ""

c

Figure 1. 3 . Forces acting on plane-

_nged missile in rectilinear flight

(cg = center of gravity).

Figure 1.4. Forces acting on plane-

winged missile when control surfaces

are deflected.

in addition to the conventional position of control surfaces behind the wings_

sho_rn in figures i. 3 andl.4_ wide application is made of control surfaces placed

in front of the wings. A plane-winged missile with a forward position of control

surfaces is shown schematically in figure i.5. The forward position of the con-

trol surface on the missile is convenient purely from the standpoint of design

considerations: the control equipment and the drive for the control surfaces

are situated in the forward part of the missile_ because the tail end is usually

occupied by the engine. The second advantage of having the control surfaces in

front is that their lift forces and those of the wingsare added rather than sub-

tracted in this case.

For plane-winged missiles the control force in a horizontal plane is pro-

duced by rotation with respect to the longitudinal axis_ i.e._ by the tilt of

the missile. Figure 1.6 shows the forces which act on a missile whose tilt

angle is y. Due to the tilt_ the lift force produces a horizontal component

(Y sin y), which is the control force changing the trajectory of the missile in

the horizontal plane. It is clear that _#nen the missile has a tilt moment_ the

vertical component of the lift force (Y cos y) decreases. To retain horizontal

flight when the tilt angle 7 is increased, it is also necessary to increase the

angle of attack _, so that the resultant force is always equal to the weight of

the missile G. Thus_ in the final analysis control in the horizontal plane takes

place because of increase in the angle of attack_ i.e._ because of the rotation

of the missile with respect to its center of gravity.

To produce the tilt angle_ both ailerons and control surfaces may be used

if they are deflected in opposite_ directions. Sometimes the control surfaces of
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Figure 1.5. Forces acting on plane-

_nged missile with control surfaces

placed in front of wings.

Figure 1.6. Forces acting on plane-

winged missile during tilt.

plane-winged missiles are combined with ailerons (fig. 1.7). Such control ele-

ments are known as elevons. Wmen the elevons are displaced in the same direction;

they perform the function of the elevator_ and }fnen they are deflected in dif-

ferent directions; they perform the functions of ailerons.

Missiles with cruciform wings have wings and control surfaces situated in

the horizontal and vertical plane (fig. 1.2). The control surfaces may be placed

in front of the wings or behind them. it is clear that for missiles of this type

the control force in the vertical and horizontal plane is actuated in the aame-

manner as that of the plane-winged missile in the vertical plane.

Figure 1. 7. Plane-winged missile with elevons.

_ssiles with annular wings use the s_e method of control as those with

cruciform wings. The control surfaces of missiles with annular wings may also

be of annular shape (fig. 1.2)_ which is free to rotate in t_{o p!anes; due to

the use of a Cardan's suspension; and to control the angle of rotation of the

missile with respect to its center of gravity. It is possible to have a combi-

nation consisting of an annular wing with cruciform control surfaces.

In the case of a wingless missile_ the control force is generated in a dif-

ferent r_nner (fig. !.8). It is necessary to point out that wingless missiles

are used as ballistic missiles_ i.e._ as missiles }Which move along the principal

part of their trajectory because of inertia obtained by acceleration to a high

velocity over an initial_ relatively short section of the trajectory. Over this

section of the trajectory (called active) the rocket engine_ which accelerates

the missile_ is operative. The thrust of the engine is substantially greater

than the atmospheric drag_ so that the missile is accelerated.

S!



Figure 1.8. Forces acting on wingless missile.

Figure 1.8 shows three positions of a wingless missile and the corresponding

forces which act on the missile. To make the presentation si_T_oie_ we consider

the motion in a horizontal plane where the force of gravity does not act. There-

fore_ during the rectilinear motion of the missile_ the angles of attack and the
deflection of the control surfaces are equal to zero (fig. l.Sa). By using the

control surface_ we rotate the frame of the missile by some angle_ so that there

is an angle of attack in the horizontal plane _ (fig. l.$b). As a result of

this angle_ a lateral aerodynamic force Z is produced_ which is quite small be-

cause the missile has no wings. We do not consider the effect of this force on

the motion of the missile_ because it does not play a principal role in the con-

trol of a wingless missile. After the missile has turned_ the control surface

should be moved back into the neutral position, if the frame of the missile

turns rapid!y_ then_ initially_ the velocity vector V0 retains its _gnitude and

position (fig. 1.8b).

_o_onen_ P2_ which isIn the following instant of time, due to the force .....

perpendicular to the velocity vector Yo_ this vector will rotate until the mis-

sile moves in a straight line along a new direction (fig. 1.8c). It is clear

that the condition for the rectilinear motion of the missile is the one i__ :_hich

the projection of all forces perpendicular to velocity vector V is equal to zero.

Thus_ in the present case_ the control force _nich changes the trajectory

of a _ngless missile is pr_e.arily the t_hrust com@onent P2_ _ich is produced

when the missile is rotated with respect to its center of gravity. This rotation

of the r_ssile in the dense layers of the atmosphere may be accor_nlished hy means

of conventional aerodyn_aic control surfaces (fig. 1.8). However_ the active

section of the trajectory of balli:_tic missiles may terminate at a very hig_ _i-

titude. As the altitude is increa_ed and the air density decreases_ the effec-

tiveness of aerodynamic control surfaces is decreased_ and they cannot be used

to control the rotation of the missile with respect to its center of gravity.

!n this case_ the missile is equipped with a jet control surface_ which operates

in the gas jet of the reactive engine.

A control surface_ made of heat-resistant material and placed in a g_s jet,

is subjected to the aerodynamic forces produced by this jet (fig. 1.9). _he

lift force of the control surface Y produces a moment around the center of
cs
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Figure 1.9. Forces acting on con-

trol surface in gas jet.

\ \

Figure 1.1O. Generation of moment

with respect to center of gravity

of missile by rotating combustion

chef,her of engine.

gravity of the missile. The drag X characterizes the loss in thrust produced
cs

by the control surface in the gas jet. The moment M is the hinge moment_
cs

_nich is overcome by the driving force on the control surface and does not pro-

duce an effect on the missile. Sometimes a wingless missile is controlled by

rotating the combustion cha_foer by means of an auxiliary rocket engine (fig.

i.I0), which produces a force co_zmonent P sin 6. This component produces a

moment_ with respect to the center of gravity_ which causes the missile to ro-

tate_ as in the case where the control surface in the gas jet is deflected.

in both cases the force produced by the deflection of the gas control sur-

face or by the rotation of the combustion chamber is directed perpendicular to

the trajectory of flight. However_ it cannot be considered the control force:

this force is too small and therefore produces no significant change in the tra-

jectory. The principal role of this force_ as we have indicated_ is to rotate

the missile with respect to its center of gravity.

All of these principles for producing a control force are associated with

the initial rotation of the missile _th respect to its center of gravity. This

rotation produces a control force and changes the direction of motion of the

missile. _Ynen a direct method is used to produce a controlling force_ it is not

necessary to change the angular position of the missile_ and it is not_ therefore_

necessary to have control surfaces. The control force may be produced by aero-

dynamic as well as by reactive forces. The aerodynamic forces are used to guide

missiles with trajectories not outside the relatively dense layers of the atmos-

phere.

To regulate the control force_ the wings of the missile are designed so

that they can be rotated (fig. i.ii). They are situated in such a way that their

lift force is as close as possible to the center of gravity of the missile. The

_ngs are rotated by a powerful actuator which responds to control signals. Such

missiles are equipped with a sufficiently developed empennage_ so that the lon-

gitudinal axis of the missile practically coincides _th the direction of the

velocity vector. During rectilinear flight in a horizontal plane the wings are

situated along the axis of the fr_me_ and their angle of attack as well as the

angle of attack of the frame are equal to zero. W_en the _ngs are rotated with

respect to the frame_ an angle of attack is developed together with the control

/lg
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Figure I.ii.

able wings.

Missile with rotat-

f

Figure 1.12. Control force of rmis-

sile with rotatable wings.

Figure 1.13 . Missile with lateral reactive _ __fL US'6.

force_ _nich is normal to the velocity vector of the missile (fig. 1.12). This

force produces the rotation of the missile's velocity vector and changes its

trajectory, in this case the longitudinal axis of the missile is continuously

oriented with respect to the velocity vector.

At high altitudes the _ngs_ like the control surfaces_ become ineffective

and ca_qot produce a substantial control force, in this case_ to produce a con-

trol force_ we may use a reactive engine with a lateral thrust (fig. 1.13). The

axis of the side nozzles is placed as near as possible to the center of gravity_

so that the operation of the engine does not produce a moment which turns the

frame with respect to the center of _ravity. The magnitude of the side force

is controlled by the distribution of the ejected gases through the side nozzles.

it is ir<_ortant to point out that the control of a missile by means of lateral

thrust is the only method that can be used at high altitudes_ if the main reac-

tive engine is no longer operating and the missile is moving due to its inertia.

This method of controlling the trajectory is used by cosmic rockets.

The principal advantage of regulating the control force directly_ compared

with the method of control where the missile is rotated with respect to its

center of gravity; is the s_mll delay in the generation of the control force

after the control signal is received. The time required to rotate the wings

of a missile or to change the f!o}_ of gas through the side nozzles is substan-

tially less than the time required to rotate the missile with respect to its

center of _ _÷• o._v_y. For certain types of highly maneuverable r_ssiles_ this

advantage may be quite significant.

The disadvantage of the control system which rotates the wings is the high

power required to actuate the wings. In addition_ it is difficult in either

method to get this force to coincide _ith the center of gravity during the en-

tire flight period of the missile.

A7
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Figure 1.14. Schematic representa-

tion of lift force developed when

spoiler is moved out.

/ .Y//

Figure 1.15. Spoiler installed be-

hind trailing edge of profile, l--

profile_ 2--spoiler_ 3--actuator.

In addition to these conventional control elements_ missiles are some-

times equipped with special control devices--flow interruptors or spoilers.

The principle of operation of a spoiler is illustrated in figure 1.14. A

spoiler_ installed on the profile of the missile stabilizer_ may be moved out

into either direction by means of some driving mechanism. _men its position

is s_etric (fig. 1.14a)_ the spoiler impairs the flow around the profile and

increases its drag_ but does not produce a lift force on the profile. _nen

the position of the spoiler is asymmetric (fig. 1.14b)_ the flow over one side

of the profile (where the spoiler is removed) is improved and the pressure on

this side is decreased_ while on the other side (where the spoiler comes out

further) the disruption of the flow and the pressure increase. As a result of

this_ a lift force Y is produced which causes the missile to rotate just like
cs

a conventional control surface. Sometimes a spoiler is installed behind the

trailing edge and noz inside the profile (fig. 1.15); but in this case its

action is the same as in the first case. if the spoiler is installed behind

the wings and not behind the stabilizer_ then its displacement will produce an

effect which is analogous to the rotation of the wing; i.e._ we have a direct

regulation of the force which controls the missile.

Usually spoilers are deflected into their extreme positions; which makes

it possible to use simple dLrivers of the relay type. The power required to

actuate spoilers as a rule ms substantially less than the power required to

actuate control surfaces. The disadvantages of spoilers include the increase

in the drag of the missile; associated with the deterioration of the flow

around the profile containing the spoiler.

The control of a missile in t<:o planes--vertical and horizontal--is purely

conditional for some types of missiles. This operation is significant for plane-

winged missiles and for missiles _th tilt stabilization when the rotation of

the missile around its longitudinal axes is not permissible. However_ many

missiles do not have stabilization of this type and ma_ occupy an arbitrary

position with respect to their longitudinal axes. For missiles of this t}_e_

the control planes coincide with the planes containing the control elements at

the particular instant of t_e. Fiually_ some missiles spin around their ion-

gitudinal axes. In this case_ it is rational to consider one spatial picture

of the forces acting on the missi!e; rather than the forces in two planes.
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Section 1. 3. Engines for Guided Missiles

All types of guided missiles (except aerial bombs) are equipped with en-
gines designed either to accelerate the missile to a definite velocity or to
maintain a given velocity during the entire flight of the missile. The large
variety of guided missiles and of the conditions for their use has resulted in
the application of all known types of reaction engines. A reaction engine is
one in which the thrust is produced directly_ without mechanical elements be-
tween the engine and the ejected air mass. In reaction engines, this force is
the reaction of the jet leaving the nozzle of the engine at high velocity. In
nonreaction engines, the thrust is produced indirectly, because an intermediate
element (the air propeller) exists between the engine and the ejected air mass.
Missiles utilize reaction engines exclusively, because only these can provide
the high flight velocities. In addition, at altitudes where air density is
low, the reaction engine (in particular a rocket engine) is the only type of
engine capable of developing the large thrust necessary to control the missile.

Reaction engines may be divided into two basic groups: air-breathing jet
engines and rocket engines. In air-breathing engines, fuel combustion is ac-
complished by using the oxygen obtained from the atmosphere surrounding the

engine. At high altitudes and in air-free space, engines of this type cannot

operate. In a rocket engine, the fuel contains both components necessary for

combustion: the combustible material and the oxidizer. Therefore, the origin

of the gas jet which produces the thrust of a rocket engine is not associated

with the presence of surrounding air. The largest thrust is obtained in air-

free space.

Each of the two groups of reaction engines in turn consists of several

types of engines. Air-breathing jet engines are of three types: turbojet

engines_ ramjet engines, and pulsejet engines. Rocket engines are subdivided

into two types: engines utilizing solid fuel and engines utilizing liquid

fuel.

Let us consider the principle of operation and the basic characteristics

of each of these reaction engines. Figure 1.16 shows the schematic diagram of

a turbojet engine. The air which enters through diffusor i is compressed by

compressor 2. At the present time, axial and centrifugal compressors are used.

Part of the compressed air enters combustion chamber 4, where it is mixed _rlth

the fuel (usually kerosene) introduced through fuel injection nozzle 3, where

the mixture is burned. The products of combustion are mixed with the remaining

part of the colder air flowing from the compressor and are directed to turbine

buckets 5. As the gaseous products of combustion pass through the turbine, it

begins to rotate and drives the compressor mounted on the same shaft. The hot

gases passing through the turbine are ejected at high velocities into the atmos-

phere through nozzle 6. The reaction of the jet flowing from the nozzle of the

engine produces the thrust of the engine.

The schematic diagram of a ramjet engine is shown in figure 1.17. A ram-

jet engine has no moving parts and is the simplest of the air-breathing jet en-

gines. In a ramjet engine, the air is compressed due to the velocity of the

air entering the engine. Consequently, it can begin to operate only when _he

13
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Figure 1.16. Schematic diagram of

turbojet engine, l--diffusor, 2--

compressor, 3--fuel injection noz-

zle, 4--combustion chamber, 5--tur-

bine, 6--nozzle.
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/

Figure 1.17. Schematic diagram of

ramjet engine, l--diffusor, 2--

fuel injection nozzle, 3--combus-

tion chamber, 4--nozzle.

flying machine on which it is installed already has a substantial velocity.

Diffusor i decreases the air velocity entering the engine and converts a large

part of the kinetic energy of the air into potential energy in the form of dy-

namic pressure. After being compressed in the diffusor 3 the air enters com-

bustion chamber 3, in which fuel is injected simultaneously through nozzle

2. The mixture of air and fuel burns continuously in the combustion chamber.

The hot gases formed in the combustion chamber flow out into the atmosphere

through nozzle 4 at a velocity higher than the flow velocity past the engine.

As a result the engine produces a thrust.

Figure. 1.18. Schematic diagram of pulsejet engine, l--dif-

fusor_ 2--series of valves, 3--combustion chamber_ 4--fuel

injection nozzle, 5--nozzle, 6--exhaust tube.

The third type of jet engine is the pulsejet, represented schematically in

figure 1.18. Input diffusor I compresses the air entering the engine during

flight. As a result the air passes into combustion chamber 3 through a series

of valves 2, which permit it to flow in only one direction. In the combustion

chamber the air is mixed with the fuel flowing from fuel injection nozzle _

and the mixture burns_ forming hot gases. The pressure in the combustion

chamber increases_ which causes the valves to close. The products of combus-

tion flow through nozzle 5 and exhaust tube 6 into the atmosphere with a veloc-

ity greater than that of the air entering the engine. Due to this, the engine

develops thrust. As the gases leave through the exhaust tube_ the pressure in

the combustion chamber decreases until the valves open again, and the cycle is

repeated. The pulsation frequency of an engine depends on its dimensions and

varies from 40-250 cps. Unlike the ramjet engine, the pulsejet may develop a

thrust even when the flight velocity is zero_ i.e._ during the launching of

the device in which it is installed. This special feature of a pulsating en-

gine is due to the presence of valves and the inertia of the gas mass which

moves along a rather long exhaust, tube.

/2O
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Figure 1.19. Rocket engine utilizing solid fuel in-

stalled in missile. 1--control system, 2--warhead,

3--engine case, 4--solid fuel, 5--combustion surface,

6--nozzle.

The principal shortcoming of a jet engine is that it requires surrounding

air. The air density decreases rapidly with altitude. The limiting altitude

at which any type of air-breathing jet engine can be used is of the order of

3o-4o kin.

A rocket engine utilizing solid fuel is the simplest type of reaction

engine. The solid fuel consists of a homogeneous mixture of combustible mate-

rialwith an oxidizer. Existing engines use solid fuels of various chemical

composition. Figure 1.19 shows a rocket engine utilizing solid fuel installed

in a missile. The case of engine 3, filled with solid fuel 4, simultaneously

serves as the combustion chamber of the engine. As the solid fuel burns, the

products of combustion are ejected with high velocity through nozzle 6 and

thrust force P is exerted on the surface of solid fuel 5 (or on the front _i!

of the combustion chamber). Usually the burning time and, therefore, the

operation time of the engine using solid fuel is 10-30 sec. The combustion

chamber is therefore not cooled, even though the temperature in the combus-

tion chamber is high. Sometimes the internal surface of the combustion

chamber is covered with heat-resistant thermal insulation.

Liquidrocket engines usually use a two-component mixture consisting of a

liquid combustible material and a liquid oxidizer. Such engines have two prin-

cipal parts:

(i) one or several combustion chambers in which the liquid fuels undergo

chemical reaction forming gases at high pressure and temperature, which flow

out of the nozzle and produce the thrust;

(2) devices for supplying and atomizing the combustible mixture in the

combustion chamber.

The combustible material and the oxidizer are supplied by means of turbine

pumps or by utilizing the pressure of an inert gas in a gas accumulator. Figure

1.20 shows the schematic diagram of a liquid rocket engine installed in a mis-

sile. The combustible material i and oxidizer 2 are supplied to the fuel in-

jection nozzle 6 of combustion chamber 7 by means of pumps 4. The pumps 4 are

driven by gas turbine 3. The gases for driving the turbine are formed in the

combustion chamber of turbogas generator 5, which is also supplied with a small

portion of fuel and oxidizer. To cool the combustion chamber walls, both fuel

/21
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Figure 1.20. Liquid rocket engine installed in missile.

l--combust_b!e substance, 2--oxidizer, 3--turbine, 4--

fuel pumps, 5--turbine gas generator, 6--fuel injection

nozzle, 7--combustion chamber, 8--nozzle, 9-=warhead,

10--control system.

components are used. As shown in figure 1.20, these are supplied to the fuel

injection nozzles through recesses in the walls of the combustion chamber.

This cooling decreases thermal losses_ and the engine is capable of operat-

ing for a longer period of time wit aout damage to the combustion chamber. In

additio_ to this method, liquid rocket engines use other cooling systems(e.g.,

evaporation system)_

We pointed out that the basic advantage of rocket engines compared with

jet engines is that their thrust does not depend on the presence of atmos-

phere. Consequently, rocket engines are not limited in altitude and are the

only practical engines suitable for flight at high altitudes and for flight

into cosmic space. The second significant advantage of a rocket engine, com-,

pared with all other engines, is its highest thrust per unit frontal area.

However, rocket engines have a substantial shortcoming which eliminates

their use in aviation as the principal source of thrust. This shortcoming con-

sists of high fuel consumption, associated with the necessity of carrying both

fuel and oxidizer. Compared with jet engines which are used at low altitudes,

rocket engines consume substantially more fuel for producing the same thrust.

Section 1.4. Modern Guided Missiles

Guided missile technology is developing very rapidly. In this section

we give a brief description of some guided missiles developed in capitalistic
nations. I

i. Ballistic Rockets. The term ballistic rocket is used for a missile

whose trajectory is that of a freely thrown body (fig. 1.21), except over a

short region when the rocket engine is operating. The launching of ballistic

missiles is done from launching pads_ usually in the vertical direction in order

to reduce the portion of the flight-in the dense layers of the atmosphere. When

/23
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Figure 1.21. Trajectory of ballistic rocket.

the rocket achieves sufficient velocity_ the control system produces rotation

of the velocity vector in the firing plane by an angle of approximately 45 °

with respect to the horizon (for short-range rockets). When preassigned velocity

and flight direction are achieved_ the engine is turned off and the rocket con-

tinues its flight along a ballistic trajectory.

A large number of b_llistic rockets has already been developed for various

purposes. The range of ballistic missiles varies from several tens and several

hundreds of km (tactical missiles) up to several thousand km (strategic mis-

siles). Ballistic missiles may be launched from the ground_ from ships and

_rom submarines. It is also possible to launch such missiles from carrier air-

planes.

Figure 1.22 shows the Atlas Intercontinental Ballistic Missile (USA).

Basic Data on the Atlas Intercontinental Ballistic Missile

Launching mass--90_000 kg

Mass of warhead--l,360 kg

Mass of fuel--80;O00 kg

Total length--24.4 m

Frame diameter--2.75 m

Velocity (maximum)--20,000 km/hr

Range--9,000 km.

At the forward part, the cylindrical frame of rocket 3 is transformed into

cone 2 which contains the warhead (thermonuclear charge). The cone is terminated

with a spherical nose, having an aerodynamic endpiece i. The endpiece serves to

transfer the compression shock from the spherical nose ahead to decrease the drag

of the missile and the a@rodynamic heating of the nose. The control system is

contained within cowlings 4. The main engine, with a thrust of approximately

300 kilonewtons (kN) is placed in tail funnel 7. The nozzle of engine 6 pro-

trudes at the end of the missile. Booster engines 5, with a thrust of 600 kN

each, are situated diametrically opposite on the sides of the missile frame. In

17



addition_ there are two small engines 8 to control and stabilize the missile

over the initial part of the passive trajectory. Antenna 9 is designed to

transmit data on the parameters of motion to the control point.

The rocket has a self-contained control system augmented by remote con-

trol from the launching site by radio. During launching, the booster and the

sustainer engines operate and the same fuel is used (kerosene and liquid

oxygen). When a large part of the fuel has been consumed, booster engines 5

together with funnel 7 are jettisoned, and the remaining acceleration of the

rocket is carried out by the sustainer engine. The Atlas rocket is controlled

by rotating the combustion chambers of the engines_ attached to the frame by

means of Cardan's suspensions.

1 2 3 4 5

•
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Figure 1.22. Atlas Ballistic Missile.

1--aerodynamic endpiece, 2--cone, 3--

frame, 4--cowling of control system,

5--booster engines, 6--nozzle of sus-

tainer engine, 7=-tail funnel, 8--

auxiliary engines_ 9--antenna.

When covering the maximum range (9_000 km), the rocket moves along an

elliptic trajectory and reaches an altitude of approximately i_200 km. The

flight time in this case is approximately 30 min. On the descending branch of

the trajectory, cone 2 with the warhead separates from the frame of the rocket.

When this cone enters the dense regions of the atmosphere, its velocity is more

than 15 times the velocity of sound. To preserve this part of the rocket from

intense aerodynamic heating_ it is provided with a multilayer heat-resistant

covering.

2. Airplane-Missiles. Airplane-missiles have the same aerodynamic config-

uration as piloted airplanes. As a rule the sustainer engine is operative over

the entire trajectory of the airplane-missile. Usually, flight to the target

is accomplished at constant altitude determined by the ceiling of a given air-

plane-missile.

Like the ballistic missiles, the airplane-missiles have a variety of

purposes with corresponding ranges. They are launched from the ground; from

ships and from airplanes. Compared with ballistic missiles; the airplane-

missiles are more economical because, for the same range, the quantity of fuel

required is several times less. However 3 they are substantially more vulnerable

than rockets because their velocities and altitudes are much smaller.

18



As an example, we consider the Snark strategic airplane-missile (USA),

shown in figure 1.23.

Basic Data on the Snark Airplane-Missile

Take-off mass (without the booster engine and the suspended tanks)--22_O00 kg

Mass of the warhead--l,300 kg

Total length--21 m

Wing span--i 3 m

Fuselage diameter--l.6 m

Velocity--g60 km/hr

Range--8,000 km.

The forward section of fuselage i contains the warhead (thermonuclear charge).

The middle part 2 contains the fuel tanks and the control equipment. The tail

section 4 of the fuselage is occupied by the sustainer turbojet engine. The fuel

consists of kerosene. The missile is self-controlled by means of an inertial and

a celestial navigation system. The control elements consist of elevons 3 and

course rudder 5.

• I Z .

Figure 1.23 . Snark airplane-missile. 1--forward

section, 2--middle section, 3--elevons, 4--tail

section, 5--course rudder.

The Snark airplane-missile is launched by means of two booster, solid fuel

engines at some angle with respect to the horizon. When the definite velocity

is reached at which the wings of the missile develop the necessary lift force,

flight is continued by means of the sustainer engine at an altitude of 15 km.

As fuel is consumed, the flight altitude is slightly increased. Over the tar-

get the airplane-missile is placed into a dive by the control system. During

this course the forward section with the warhead separates from the airplane-

missile. The significant shortcoming of the Snark airplane-missile is its low

flight velocity, which makes its interception easy.
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3- Guided Aerial Bombs. Guided bombs are used to hit small targets

(bridges, ships, command points, etc.) whose antiaircraft defense is ineffec-

tive, permitting the bomber to pass over the target.

Aerial bombs are controlled by aerodynamic forces which act on their

wings, and which differentiate them from unguided bombs. In view of the con-

ditions which restrict the manner in which the bomb can be carried in an air-

plane, the wings cannot be made too large. Therefore_ the control force of

such bombs is small, and it is for this reason that there is only a small dif-

ference in the trajectories of guided and unguided aerial bombs.

Figure 1.24 shows these trajectories. The bomb which is dropped at point

0 first falls to point 01 without guidance. The broken line 0102 shows the

trajectory of the bomb when it is not guided. Trajectory i corresponds to the

maximum deflection of the control surfaces of the guided bomb in one direction,

• , 07 °

• I I

Figure 1.24. Trajectory of guided and unguided

aerial bombs.

while trajectory 2 corresponds to their maximum deflection in the opposite di-

rection. Thus the possible impact range which can be controlled in one plane is

given by segment ab. It is clear that the situation is the same in any other

plane_ and consequently there is a certain area on the ground within which the

impact point of the bomb may be controlled. The shape of this area depends on

the aerodynamic scheme of the bomb. If, e.g., the bomb has an annular wing_

which is most advantageous from the standpoint of size, the shape of the impact

area will be close to a circle. Aerial bombs are controlled by external guid-

ance (from the carrier airplane) and by homing guidance. In the latter case,

the target must exhibit some type of contrast on its surrounding background.

As an example, figure 1.25 shows the Tarzan aerial bomb (USA). The total

mass of the bomb is approximately 6,000 kg_ while its total length is 8.5 m.

The warhead of bomb 4 is a blockbuster. The bomb is aimed by external guid-

ance from the carrier airplane. The receiving part of the control system is

situated in tail section 2 which has a developed stabilizer i. The annular

wing 3 can be rotated in two perpendicular planes which produce the control
forces.
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Figure 1.25. Tarzan guided aerial bomb. 1--stabilizer,

2--tail section, 3--annular wing, 4--warhead.

A significant shortcoming of guided aerial bombs is the necessity for the

carrier airplane to fly over the target or close to it, which takes it within

the range of antiaircraft weapons.

4. Guided antiaircraft missiles protect various objects (populated areas,

industrial installations, warehouses, ships) from air attack. Since this prob-

lem is very broad, there is a large number of various modifications of such

missiles. These modifications differ in range and power of warhead. The mini-

mum ranges for missiles designed to be fired at aircraft near a protected area

are 20 to 40 km. As a rule, such missiles have a warhead which produces a frag-

mentation effect and utilizes a time fuse. At the same time, missiles are being

developed to destroy the intercontinental rockets of the enemy. It is obvious

that these missiles must have a range of hundreds and thousands of km. Antiair-

craft missiles are used against rapidly flying and highly maneuverable targets.

Therefore, the missiles must have high maneuverability and a control system

which guide s them to the target with high accuracy. To achieve this high accu-

racy, the antiaircraft missiles, particularly those of long range, are equipped

with a combined control system: external guidance at the initial and middle

sections of the trajectory and homing guidance at the terminal section of the

trajectory.

As an example, let us consider the Nike-Hercules antiaircraft missile (USA)

shown in figure 1.26.

Basic Data on the Nike-Hercules Missile

Launching mass--4,500 kg

Mass without booster engines--2,270 kg

Total length--12.7 m

Length without booster engines--8.2 m

Wing span--l.9 m

Velocity--3,700 km/hr
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Inclined range--80 km.

Frame I of the missile contains the warhead and the combined guidance sys-
tem (external guidance along the initial section of the trajectory and homing
guidance close to the target) and a solid fuel sustainer engine. The warhead
may contain a charge of ordinary e_plosive or an atomic charge of various
trotyl equivalents. To produce the control force, the missile is equipped with
cruciform wings 2 with elevons 3 as the control elements. The four solid pro-
pellant booster engines 4 with stabilizer 5 are jettisoned after the missile
has been accelerated and the propellant has been burned.

Figure 1.26. Nike-Hercules antiaircraft guided missile.
1--missile frame, 2--wings, 3--elevons, 4--booster en-
gines, 5--stabilizer.

The launching site and the tracking site are outfitted to control a battery
of four missiles (fig. 1.27). The launching site has two firing pads (with a
diameter of 150 m) to launch the missiles and underground installations: the
control point for launching; storage space for missiles; space for assembling

and checking out the missiles. At the tracking site, which is situated several

km from the launching site, three radars are installed: long-range radar for

detecting the targets, radar for tracking the target and radar for guiding the

missile. The last two radars are connected to a computer, which controls the

guidance radar in such a way that the missile moving in the equisignal zone of

the radar beam is directed to intercept the target. As the missile approaches

the target, it switches to a homing guidance system.

5. Guided Missiles for Aerial Combat. Guided missiles for aerial combat

are designed to be launched from an airplane towards aerial targets: aircraft

and guided missiles. This demands special requirements for such missiles: rel-

atively small weight andsize, high speed, maneuverability and accuracy. High

speed with small size is only possible because the range of these missiles is

very small. The range of modern missiles for aerial combat is several tens of

km. Due to their short range, these missiles are sometimes equipped only with

abooster engine, which accelerates the projectile to a high velocity, usually
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1--protected area;

2--guidance of missile to target%

3--target tracking;

4--guidance point;

5--embankment;

6--fortification;

7--administrative buildings and

personnel housing;

8--firing pads;

9--launching control;

10--storage;

ll--maintenance;

12--fuel storage.

Figure 1.27 . Launching site and tracking site for

Nike-Hercules missile.

two to three times the velocity of sound. After the booster engine has stopped

operating, the velocity of such a shell begins to decrease due to air resistance.

However, at the maximum range it must still be sufficient to achieve the re-

quired maneuverability and rapid pursuit of the target. The control syste_ for

aerial combat missiles use external guidance or homing guidance.

Figure 1.28 shows the Sidewinder missile (USA) for aerial combat.

Basic Data on the Sidewinder Missile

Launching mass--70 kg

Total length--2.87 m

Wing span--0.48 m

Frame diameter--0.114 m

Velocity--2,800km/hr

Range--5. 5 km.

The forward part of fuselage 3 contains the sensing element of the homing

guidance system which reacts to the thermal radiation of the target airplane.

This sensing element is covered with a transparent aerodynamic shield i. The
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Figure 1.28. Sidewinder guided missile for aerial

combat, l--cowling_ 2--control surfaces_ 3--frame_

4- -wings.

other components of the control system are also situated here. The actuators

control surfaces 2_ which are placed ahead of cruciform wings 4. The middle

part of frame 3 contains the warhead with time fuses. The ends of the wings also

have contact fuses. The tail part of the missile contains the booster 3 solid

propellant motor which operates for a period of two sec.

6. Battlefield Guided Missiles. Missiles of this type are the weapons of

infantry and are used directly on the battlefield against maneuverable and small

targets. Initially_ these missiles were developed as antitank missiles; howeverj

their high accuracy and firing effectiveness makes them universal. The character-

istic features of these missiles are their small range and relatively low flight

velocity as well as simplicity of the control system. Missiles of this type can

be made quite light.

As an example_ we consider the Nord-5200 externally guided antitank missile
(France).

Basic Data on the Nord-5200 Missile

Launching mass--18 kg

Total length--l.22 m

Wing span--0.63 m

Frame diameter--0.17 m

Velocity--700 k_hr

Range--3. 5 km.
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Figure 1.29. Rocket launcher "Nord-5200." 1--rockets,

2--launching platform, 3--controls.

Figure 1.29 shows the launcher for the Nord-5200 missiles mounted on a

truck. Six missiles i are placed on the collapsible launching platform 2. The

missiles are equipped with booster and sustainer_ solid propellant engines. The

large wing area provides for good maneuverability of the missile. The operator

controls the flight of the missile by means of command device 3_ which generates

the control signals. These signals are transmitted to the missile over wires.

The control line is made,of two thin, insulated steel wires wound on reels and

situated in the frame of the missile. As the missile flies, this wire is un-

wound from the coils. The control elements of the missile consist of spoilers

placed at the trailing edge of the wings.



CHAPTER2. SOM_MATHEMATICALMETHODSFORINVESTIGATING
AUTOMATICCONTROLSYSTEMS

/3o

Section 2.1. General Information

Missile guidance systems are systems with feedback. Figure 2.1 shows a

functional diagram of such a system. The methods of the theory of automatic

control may be used to analyze missile guidance systems. These methods fall

into two large groups. The first group contains the methods based on investi-

gating the characteristics of the system during the transient processes pro-

duced by the action of standard control signals (unit function or 6-function).

The second group refers to the frequency methods of system analysis_ which may

be called the methods of stationary state. In principle_ both methods are

equivalent; however_in specific problems_ the solution may be obtained more

rapidly or simply by one or the other method.

I. control signal

2. missile

3. coordinates of
missile with re-

spect to target

4. feedback network

Figure 2.1. General functional diagram for

a missile guidance system.

In the present book wide application will be made of two methods for analyz-

ing missile guidance systems: the method of standard coefficients and the method

of logarithmic amplitude-frequency characteristics. The method of standard co-

efficients refers to the first group_ while the method of logarithmic amplitude-

frequency characteristics refers to the second group. These methods are simple

and easy to visualize_ and it is for this reason that they are widely used in

engineering practice for designing automatic systems.

The methods of standard coefficients and of the logarithmic amplitude-fre-

quency characteristics are applicable to stationary linear systems 3 i.e._ sys-

tems which are described by linear differential equations with constant co-

efficients. At the same tim% missile control systems are frequently nonstation-

ary and nonlinear. For this reason the present chapter introduces the methods

of analyzing linear nonstationary systems and nonlinear systems as well as

methods of analyzing stationary and nonstationary systems subject to random

perturbations. Such perturbations are characteristic of missile control sys-
tems.
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Section 2.2. The Method of Standard Coefficients

Let us assume that we have a single closed loop scheme with fixed negative

feedback over an arbitrary linear transmitting system (fig. 2.2).

First let us consider the transfer function of an open loop system by dis-

connecting the feedback loop (fig. 2.2). Let us assume that the input and out-

put quantities, of this system are given by a differential equation with con-
stant coefficients

ao d_L_]_a t d_-lV
• dtn dt n-I

dy
+... + a___ -d- + a.y =

d"t ___•bx d,n-tbo
dtm dlm- 1 +... + b,,_., --d-F+ b,:. (2.1)

_ _ fLinea_ IL

--]_ystem _

Figure 2.2. Functional diagram of

single closed loop automatic con-

trol system, x--is assigned or in-

put quantity, y--is true or output

quantity.

_ Linear

--" { [system _: "-

Figure 2. 3 . Functional diagram of

single open loop automatic control

system.

It is clear that when the feedback loop is opened x = ¢. The system of linearized

missile equations or of equations with constant or quasiconstant coefficients is

reduced to such a system. By adopting the symbolic designation p = d/d% this

equation may be written in the form

N (p)y = J,_"(p) _, (2.2)

where

N(p) = aop" + a: -t -_t-... + a,,_lp + a,, [

1_I (p) = bop,, -_- bxp ",-I + ... -t- b,,,-aP -{- b,,. J (2.3)

The transfer function of a system is the ratio of the instantaneous value

of the output quantity to the input quantity. In accordance with this definition,

the transfer function of the system described by equation (2.2) has the form

V'u/,(p)= _ = ,wO_)
, N(p) (2./4.)
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It follows from equation (2.4) that the transfer function is a fractional-

rational function of symbol p.

If the feedback loop is closed, i.e._ if we return to the simplest au_oma_ic

control system (fig. 2.2), the follDwing relationship (fig. 2.3) will hold be-

tween the input and output quantities: e = x - y. Substituting this relation-

ship into equation (2.2), which remains valid for a system with feedback_ we ob-

tain a new differential equation for the closed loop system having the following

symbolic form

[M (;) + N (p)] y = M (t,) x. (2.5)

The transfer function of a closed loop system is a ratio of polynomials

_',/x(P) -- M(p) -- W(P-----L-) (2._)
M 6o) q- N (p) i -k W (p)"

The dynamic properties of this system are best illustrated by means of the

transient function H(t), _hich represents the reaction of the system or the out-

put quantity when a unit function is applied at the input.

In a system with satisfactory dynamic characteristics_ the transient func-

tion must have a form close to that of the curves shown in figure 2.4_ and the

allowable overcontrol (overshoot) and control time are determined by the specific

operating conditions of the system. There is a rather complex, but definite re-

lationship between the nature of the transfer function and the transient function.

The form of the transient function is determined by the value of zeros (roots of

the numerator) and of the poles (roots of the denominator) of the transfer func-

tion. It is clear that for any specific form of the transfer funetion_ we can

find an optimum distribution of zeros and poles for which the transfer function

will be most advantageous from the standpoint of the dynamics of the system in

.i£

• tst _I *

Figure 2.4. Graph of transient functions.

question. For each such optimum distribution of zeros and poles_ there is a

definite value for the coefficients of the polynomials in the numerator and

denominator of the transfer function which we shall call standard. We present

the values of these standard coefficients for several typical transfer func-

tions. Any polynomial of the form (2.3) may be reduced to

/>
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#" (P) = P" + A_oP5 '-_ -i-... +

•+ A._l.q_o-lp + o_

(2.7)

where D O is conditionally called the natural frequency of the system under in-

vestigation.

It is clear that the coefficients of the polynomials N(p) and N'(p) are

related by the following equations

• //AI= aX . A,;= • . A,,_l= a'_-1. _o__ l[aoOo' . ao9._ ' ..., aoQ_--l. ' ao

As a first typical function we take the transfer function of a closed loop
system which contains no zeros

¢ (p)= (2.8)
p_ + A_op "-l +...+ A__l_ -l p + _ "

For a system with such a function we obtain a transient process without

overshoot when the roots of the numerator (the poles of the transfer function)

n
are all real. For all real roots and for _0 = const the control time will be

a minimum, if all of the roots are multiples. We call this process optimum. In

this case the coefficients_, A2 ..._ A_I turn out to be the coefficients of

Newton's binomial (p + i) n. Table 2.1 shows the values of these coefficients

for n = i: 2, 3, 4, 5, and 6.

TABLE 2.1. STANDARD COEFFICIENTS FOR MULTIPLE ROOTS.

l
2
3
4
5
6

Coefficients of denominator

I 1
I 2 1

1 3 3 1
1 4 6 4 1

1 5 I0 I0 5 1
1 , 6 15 20 15 6 I

Figure 2.5 shows the graph of transient functions for systems which are de-

termined by the standard coefficients given in table 2.1. All the curves are

shown as functions of the dimensionless time _ = _0 t. The true time is given

by the expression
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t= (2.9)
O
_0

The broken lines in figure 2.5 show the control time for systems of different

order. The transient process is considered to be practically finished when the

value of the quantity !l-H(t)l'100 percent does not exceed _ = 5 percent.

If(r,) _1 - l

.-
, I ; I

O"sin_ z _5_ l 'I
0.6 -_ 1 I

I
o,¢ I

i'I_li.J'I
l

o 1 2 J _ 5 6 7 8 9 10 _;

Figure 2.5. Graph of transient functions for system
with transfer function of type (2.8) and with coeffi-

cients given in table 2.1.

If it is permissible to have some overcontrol over the transient function,

the roots may be taken to be complex, which also decreases the control time.

Let us represent the polynomial of the transfer function denominator (2.8) as a

product of n/2 identical quadratic trinomials

(2.10)

and select a value _ = 0.75. When n is odd, the denominator of the transfer

function (2.8) consists of (n - 1)/2 quadratic trinomials and one binomial of

the first degree. The free term of this binomial is assumed to be equal to i.

The values of the coefficients _ A2 ...3An_ I for this distribution of roots

are shown on table 2.2.

TABLE 2.2. STANDARD COEFFICIENTS FOR MULTIPLE

COF_ ROOTS.

Coefficients of denominator

1 1.5 1
I 2.5 2.5 1

1 3 4.25 3 1
1 4 7,25 7.,25 4 1

1 4,5 9.75 . 12.375 9.75 4.5 1

Figure 2.6 shows the graph of transient functions for systems which are

determined by the standard coefficients of table 2.2. The broken lines show

the control time for systems of different order. Comparing this time with its
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Figure 2.6. Graph of transient functions for systems

with transfer function of type (2.8) and with coeffi-

cients given in table 2.2.

value for systems, which have coefficients given by table 2.1 (curves in fig.
2.5), we see that for the same n the control time in the latter case is sub-

stantially less.

_0
Let us now consider a transfer function which has one zero equal to

An_l

(p) =
p_ + A_Qo_-_. +... + A,,_ L_- *v + _) (2.11)

Wmen the transfer function has a zero, the multiple roots_ obtained for

standard coefficients from tables 2.1 and 2.2, no longer provide a satisfactory

transient function. This function develops a large initial overshoot over the

sl;ationary value (overcontrol). To decrease the overshoot produced by the effect

of the zero, it becomes necessary to decrease the rise time of the transient

function. This can only be done by spreading out the roots of the denominator

polynomial along the real axis. There are guidelines I for the distribution of

the roots along the real axis which gives a satisfactory transient function when

zeros are present in the transfer function. For a transfer function with one

zero, equation (2.11), it is recommended that the roots be distributed on the

negative real semiaxis in arithmetic progression. The values of the coefficients

of the polynomial in the denominator of equation (2.11) are shown in table 2. 3
for this distribution.

Figure 2. 7 shows the graphs of the transient functions for systems deter-

mined by the standard coefficients of table 2. 3 .

IA. A. Krasovskiy and G. S. Pospelov, "Principles of Automation and Engineering

Cybernetics," Gosenergoizdat, 1962: G. S. Pospelov and Yu. P. Dobrolenskiy,

The Method of Standard Coefficients for Selecting the Parameters of Linear

Automatic Control Systems. Collected Articles on Automation and Electrical

Engineering, Izd. AN SSSR, 1956.

31



TABLE 2.3. STANDARD C0_FICiENTS WHEN ROOTS ARE

DISTRIBUTED IN ARiT_V2T!C PROGRESSION.

First Differ- " \
Coefficients of denominator

term ence .-" "

2
3
4

5
6

0.5
O, 183
0. 098
0.063
0.039

1.5
1.517
1. 138
0.857
0,717

1 . 2.5 1
1 5.1 6.35 I

1 7.22 16.3 11.8 " 1
1 9 29 38 18 " 1

i 11 43 "83 73 25 1

As in the previous graphs; the broken lines designate the relative con-
trol time.

b/

'H(W

_.0

48

0.6

0._

O.Z

0

_ i ! i .,_ I _ 7

7 -2 J _ 5 G

i I
I I
I I
I I
J I
l }
I
i I
I I
I ]
I I
7 8 9 '¢

Figure 2.7. Graph of transient functions for systems

with transfer function of type (2.11) and coefficients

given in table 2.3 .

Finally, let us consider a transfer function with two zeros

An_2-q_ ?/,--] A,+ on-tp. I <_,,- I"O "-0(I' (1,)..............................................
pn -I-A_-°-1P- l-i-...-i-.I o_---2.._ P -i---0"n--2"O ," -? 'ln--lC_-I _ O'I

(2.12)

To decrease the effect of zeros in this case_ it is recommended that the

roots of the polynomial in the denominator be distributed on the negative real

semiaxis according to the law of geometric progression. Table 2.4 shows the

values of the coefficients of the polynomial in the denominator _, A2_... _

An_ I for such a distribution of roots.

Figure 2.8 shows the graph of transient functions for systems determined by
standard coefficients listed in table 2.4.

The values of standard coefficients presented in tables 2.1 - 2.4 provide

optimum dynamic properties of systems with transfer functions of the form (2.8),

(2.11) or (2.12). The method of utilizing these standard coefficients to select

the parameters of control systems consists of the following. The coefficients
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Figure 2.8. Graph of transient functions for systems

with transfer functions of type (2.12) and coefficients

determined in table 2.4.

TABLE 2.4. STANDARD COEFFICIENTS WHEN ROOTS ARE DISTRIBUTED AC-

CORDING TO LAW OF GEOMETRIC PROGRESSION.

I Firstn term

3 0,182
4 0.185
5 0.075
6 0,038

Denom-

inator

5.5
3.08
3.63
3.7

Coefficients of denominator

1 6,7. 6.7 1
1 7.9 15 7.9 1

l I8 69 c9 18 l
1 36 251 485 251 36 l

_ A2_ ..._ A_I of the transfer functions or of the initial differential equa-

tions used to obtain these functions depend on the parameters of the individual

elements of the system a_ b: c3 .... Mathematically this may be formulated in

the following manner

A_o= [_(a, b, c.... ),

= (a. b,
• ' • '° • • • ° • • • " • •

A,,-l_"o -l = l.-i(a, b, c .... )
• j

Oil n-o=[ (a,b,c .... ),

(2.13)

where fi-(a_ b_ c_ ".'.) is the expression for the ith coefficient of the transfer

function or of the initial differential equation in terms of parameters a_ b_ c_

... of _ts individual elements•

The equations will form a system consisting of n algebraic equations_ if

the number of variable parameters_a, b_ c_ ... is equal to n. If the number of
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variable parameters is greater than n_ then some of the parameters are assigned

so that we obtain a system of n equations with n variables. In this case the

selection of values for the variable parameters is reduced to the solution of

the indicated system. This cannot always be carried out analytically because

the system of equations (2.13) may be nonlinear. However, if by some method

or other_ all of the n roots of system (2.13) are found and are real numbers,

the problem of selecting the parameters_ which would provide for a preassigned

optimum transient function, may be considered solved. In this case, the as-

signment of _0 means the assignment of the duration of the transient process

or of the control time.

In cases when the number of parameters a_ b_ c_ ... is less than n or when

some of the roots are imaginary, the analysis of equations (2.13) may be quite

useful, particularly because small deviations of coefficients AI, A2, ... An_ I

from standard values do not produce a substantial effect on the dynamic char-

acteristics of the investigated system.

Section 2. 3 . The Method of Logarithmic Amplitude-Frequency Characteristics

in some cases the method of standard coefficients presented in the preced-

ing sections is insufficiently flexible. Indeed, the transfer functions of

some closed loop circuits in missile control systems may not coincide with any

of the standard functions (2.8) - (2.12). in another case, the system of equa-

tions (2.13) , used to determine the parameters of the system, may not have any

real roots. Finally_ the nu_ber of variable parameters of a system may turn

out to be less than n_ and the system of equations (2.13) in this case becomes

incomplete and sometimes incompatible. In those cases where the method of

standard coefficients cannot be applied_ the problem can usually be solved by

another method_ which is sufficiently simple and more flexible. This method

of logarithmic amplitude-frequency characteristics is widely known and will

not be presented here. it is only necessary to reco_end them for application

to the selection of the control system parameters, which will be widely used

later. Let us consider the relations between the logarithmic amplitude-fre-

quency characteristics and the transient functions by considering systems which

are described by equations of the first and second order. As we know, the

method of logarithmic amplitude-frequency characteristics permits evaluation

of the dynamic properties of a closed loop system from the characteristics of

the open loop system.

First we consider the simplest automatic control system represented in

figure 2.9. When the feedback loop is closed_ this system is described by the
following differential equation of the first order

dry

y + = (2.i4)
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Figure 2.9. Functional diagram of

automatic control system described

by a differential equation of the

first order.

L fcu)

- _,_ 20db_de c
-,-t--\ J ou,_-k

H(L) __T_I I005

7.oI-÷ -_-:-_2/L-,--
• ILf-,t -,

L// IT= 

Figure 2.10. Logarithmic _plitude-

frequency characteristics (LAC) and

graph of transient function of sys-

tem shown in figure 2.9.

The transfer function of the open loop system_ shown in figure 2.9, is

given by expression

p (2.15)

Finally_ the logarithmic amplitude-frequency characteristics of this sys-

tem are given by

I, 0,_) = 20 Ig I,_-- 201,_ o_. (2.16)

Figure 2.10 shows the logarithmic amplitude-frequency characteristics and

the transient function constructed on the basis of equations (2.16) and (2.14).

These graphs illustrate the following basic relations between these character-

istics of the system_ which is described by a differential equation of the first
order:

(i) the cutoff frequency w is equal to amplification factor k;
c

(2) the cutoff frequency is inversely proportional to time constant T of

the closed loop system.

Thus_ the higher the cutoff frequency _c_ the faster will the system respond
to a control signal.

(r,p+z)_

Figure 2.11. Functional representation of automatic control

system described by differential equation of the second order.
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Figure 2.11 shows the schematic diagram of a system described by a differen-

tial equation of the second order. T_nen the feedback loop is closed, this sys-

tem is described by equation

T_ d_l _t_ dy
dt--=IS ' d----i+ kv kx. (2.17)

The transfer function of an open loop system is determined by the expression

_/(p)= k (2.18)

(_p + 1)p

Finally, the logarithmic amplitude-frequency characteristics for this system are

given by

= 2oI k- 2Olgo,-2o1 ]/' 1 . (2.19)

Figure 2.12 shows the logarit_ic smlplitude-frequency characteristics and

the transient functions constructed on the basis of (2.17) and (2.19) for various

values of the relative attenuation coefficient _ = 0.5/Tv_ik. For a system de-

scribed by an equation of the second order, this coefficient will be less than

0.5, if the reciprocal frequency e_ = I/T!_ is less than the cutoff frequency e c
e

In this case, the transient function has an oscillatory nature. When e I = _c'

the relative attenuation coefficient is equal to 0.5 and becomes greater than

0.5 when e l>_c. The greater the value of el, compared with Wc, the closer is

the transient function of the second order system to the exponent with the ti_e

= On the basis of what we have presented we may establish theconstant T 1/e c .

following basic relations between the logarithmic amplitude-frequency character-

istics and the transient function for a system described by a differential equa-

tion of the second order.

(i) to accelerate the transient process, we must increase the cutoff

frequency e ;
c

(2) to obtain a transient function with good attenuation, the cutoff fre-

quency must correspond to the region of the logarithmic amplitude-frequency char-

acteristics with a slope of 20 db/decade;

c

(3) the greater the region with a slope 20 db/decade near the frequency

(i.e., the greater wI is compared with _c) , the greater is the relative at-

tenuation coefficient.

The conclusions obtained for the second order system turn out to be valid

for more complex systems.
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Figure 2.12. LAC and graph of transient functions of

system sh6wn in figure 2.11.

As an example, figure 2.13 shows the logarithmic amplitude-frequency charac-

teristics which correspond to the following transfer function of an open loop

system

. k(T__p-i- 1) T___Z__. k(p-F o,_)
W(p) = p(T_p-',- 1)(T_p+ I) = T_T_ pC.-_-_,_)(p-l-_) (2.20)

in any system, the cutoff frequency characterizes the response of a system.

To obtain the necessary characteristics for the transient function of a closed

loop system, t_e logarithmic amplitude-frequency characteristics of an open loop

system must have a sufficient region near the cut-off frequency (approximately

one decade) with a slope of 20 db/decade. In addition, the ratio of frequencies

should be within limits 2 < w3/wc< 4. The wider the middle region of the
c

logarithmic amplitude-frequency characteristics with a slope of 20 db/decade, the

closer is the transient process to an exponent when a unit function is applied

at the input.

L(o._)db
J

I "_I dec

-40 db/de c_

Figure 2.13. LAC corresponding to transfer func-

tion (2.20).
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Sometimes the logarithmic amplitude-frequency characteristics of an inves-

tigated system in the regions from _I to w 2 and from e 3 to infinity has a slope

greater than that shown in figure 2.13. For these logarithmic amplitude-fre-

quency characteristics_ the reco_r_nendations made concerning the behavior in the

region of the cutoff frequency are also valid. However_ in all cases when the

differential equation is of a higher order than 2_ these recommendations are

qualitative in nature. A more accurate relation between the logarithmic ampli-

tude-frequency characteristics and the transient function of the system is

given by special nomograms I shown in figures 2.14a - 2.14i. On these nomograms

typical logarithmic amplitude-frequency characteristics are determined by fre-

quencies el, e3 and by the ordinate _i" Frequencies e I and e3 are given with

respect to the cutoff frequency ec. It follows from figure 2.13 that the as-

signment of _i and eI for a selected frequency ec means the assignment of e 2.

An increase in any one of the parameters (_i or el) , when the second one is

constant, leads to an increase in e 2 and to a decrease in the middle regio_

where the slope is 20 db/decade. In this case overcontrol and oscillations of

the transient process increase.

The following characteristics of a closed loop system (fig. 2.15) are de-

termined by means of the nomogra_ in figure 2.14:

t
c

-- control time during which the transient function of the ou_ub

quantity reaches a value which differs from the stationary value

by not more than 5 percent;

tO -- time required to reach the first overshoot;

H -- maximum value of the transient function;
m

e t -- frequency of oscil_ation of the transient function near the
stationary value;

e -- frequency of the maximum value of the amplitude-frequencym
characteristics of a closed loop system;

-- magnitude of this _ximum.
m

The characteristics of parameters shown on the nomograms in figure 2.14 are

given as a function of the ratio el/_ c for various values of _i (db) and of the

ratio e3/e c. The nomograms give the relative and not the absolute value of the

!
Handbook on Automatic Control, edited by J. Traksel, Gosenergoizdat, 1962.
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parameters tc, to_ w t and Wm_ which are shown in the following form:

to  c/lO, ®m/% •

t c w /I0,C'

In designing a control system for some object it usually turns out that

the frequency response characteristics of the object in a simple control system

or regulator are insufficient to provide for the necessary dynamic properties

of the system. Thus_ it becomes necessary to include a compensating device

into the circuit to damp out the initial frequency response characteristics and

obtain the necessary dynamic characteristics of the system. These devices z_y

be of the most diverse physical form. However_ the most common compensating

devices used in automatic control systems are composed of active resistances

and capacitors. Such systems may be connected into the transfer circuit of a

control signal 3 if the latter is adc signal.

{ "Vm,Hm

C--
2,# "--

L_
I

2.2_--

I

2,0---

zs _

13 ---

S_. 1.0

3

Figure 2.14a. Nomograms of typical LAC; a is:
i

db/dec;_ 3 to _ = 40 db/dec.

to co = 40
2
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Figure 2.15. Graph of typical transient function

of closed loop system.

Table 2.5 shows the most common schemes used for compensation, their trans-

fer functions and frequency response characteristics. It should be pointed out

that these tables can be used for compensating devices which are of a different

physical nature (mechanicalj hydraulic, pneumatic), if their transfer functions

coincide with those shown in table 2.5. The method of logarithmic amplitude-

frequency characteristics for selecting the automatic control system parameters

consists of the following. Let us assuage that we have an automatic control sys-

tem of a definite structure with known parameters, which may be used as a basis

to construct the logarithmic amplitude-frequency characteristics of the system.

If the dynamic characteristics of the system are unsatisfactory, we can change

the frequency response characteristics of the system and provide the necessary

dynamic properties by using a compensating device. This device should be se-

lected in such a way that the response of the system agrees with these recom-

mendations. The selection of the compensating device parameters by means of

frequency response characteristics is clarified in the following example.

Example 2.1. Let us assume that we have a control system which_ in

its open loop state has the following transfer function

(p)-- (2.21)
p (T_ p -_- I) (T_ p + 1)

Figure 2.16 shows the frequency response characteristics correspond-

ing to the transfer function _2.21) when the parameters have the following

values: k = 30; T3 = 0.i sec T4 = 0.02 sec; w 3 = I/T 3 = i0 I/see and

w 4 = I/T 4 = 50 I/see. This frequency response characteristic (curve I)

has a cutoff frequency in the region with a slope 40 db/decade, which

agrees with the recommendations presented for the unfavorable character-

istics of the transient process--weak attenuation of the oscillations.

This proposition is confirmed by the transient function of the closed

loop system shown in figure 2.17 (curve i).

The typical desired frequency response characteristics for this sys-

tem (curve 2, fig. 2.16) are constructed on the basis of these recommen-

dations. These frequency response characteristics have an amplification

factor of k = 30_ but have the following conjugate frequencies: _i = 0.i

°
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• _[<i b/dec

-60ab/de%

Figure 2.16. Frequency response

characteristics corresponding to

transfer function (2.21).

I/ik)

_'_[ 1 1

......i2

o.s
45

0 _2 0.o0.60.g/,012 I0 4# 1,S20 c see

Figure 2.17. Graph of transient

functions of system. 1--uncom-

pensated, 2--compensated.

1/sec; m2 = 1.0 I/sec; _3 = 10.0 1/sec and w 4 = 50 1/sec. The cutoff fre-

quency Wc is in the region where the slope is 20 db/decade and w3/Wc =

3.16. The difference between curve i and 2 on figure 2.16 gives the char-

acteristics of the compensating network which change the characteristics

from those shown by curve i to those shown by curve 2. Comparing curve 3

(fig. 2.16) with the typical response characteristics of compensating net-

works shown in table 2.5, we note that it represents an integrating network

(see drawing No. 8 in table 2.5). The circuit bias a transfer function

where

T_p + ! (2.22)
wk@)=

Tip _- 1

T1 = (r_ -i,- r_ c; To. = qc. (2.23)

Comparing these values of the compensating network's constants with

those required on the bases of curve 3, we obtain the relations w I = 0.i =

i/T i and w 2 = 1.0 = I/T 2. Substituting the values of TI and T 2 from equa-

tion (2.23), we obtain: rlc = i; (rI + r 2) c = I0 and, final!_r2/r I = 9.

By assuming a value for any of the three par_aeters of the compensating

network, the remaining two are obtained from these relations. Let us as-

sume_ e.g., that c = 10 -5 _ = i0 _; then rI = 105 ohm and r2 = 9"105 ohm:.

When a compensating network is present, the transfer function of the

system under consideration takes on the form
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k (T_p -i- I)

p (7'..p -i- i) (7"3p -',- I) (7',; -i- 1)
(2.24)

Figure 2.17 shows the transient function of a closed loop system

(curve 2)_ which has a compensating network with parameters which have

been determined. Compared with the uncompensated system (curve i)_ the

transient function of the compensated network has a form which is dii'-

ferent in principle.

Tgnen we selected the parameters of the co_mensating network in the ex-

am@le 2.1_ we set forth only one requirement--an increase in damping. This

requirement is satisfied because the cutoff frequency of the compensated sys-

tem in substantially lower than that of the uncompensated system. If this is

undesirable_ a different type of compensating network may be used. Thus_ the

selection of any compensating network is determined by the specific require-

ments of the control system in question.

In conclusion we should point out that the method of logaritbznic amplitude-

frequency characteristics in the form presented here is applicable only to the

ro£nimum phase systems. A system is known as a minimum phase system if its

transfer function (when the feedback loop is open) does not contain zeros and

poles in the right semiplane of the complex plane. For minimum phase systemsj

it is characteristic to have a single-valued relation between the amplitude and

phase characteristics_ so that it is only necessary to know one of these char-

acteristics. Therefore_ the method of logarithmic amplitude-frequency character-

istics operates only with amplitude characteristics. If the logarithmic ampli-

tude-frequency characteristics have a sufficiently large region with a slope of

20 db/decade_ this provides the necessary stability in phase, in synthesizing

nor_:_inimum phase systems_ it is necessary to consider simultaneously the _i_li-

rude and the phase-frequency characteristics of open loop systems.
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Section 2.4. Brief Remarks on the Theory of Nonstationary Linear Systems

The methods for analyzing linear systems presented in sections 2.2 and

2.5 are applicable only to stationary systems described by linear differential

equations with constant coefficients. At the same time_ the motion of a guided

missile in the general case is described by nonlinear equations with variable

coefficients. The variations in the pars_eters of the missile itself are due

to change in its weight_ caused by fuel consumption_ and change in its velocity

and flight altitude. In subsequent chapters we shall show that the character-

istics of some control systems depend a great deal on the distance between the

missile and Zhe target, in some cases it is convenient to consider these char-

acteristics as depending on the flight time of the missile. By using various

approximation techniques_ which are presented when specific examples are con-

sidered_ it is sometimes possible to reduce nonlinear equations with variable

coefficients to linear equations_ also with variable coefficients. However_

even with this simplification of the problem some difficulties still arise.

The basic difficulty in investigating systems described by linear dif-

ferential equations with variable coefficients is that the solution of such
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equations, which are of an order greater than one, does not contain element_ry

functions. The integration of this class of equations cannot be carried out by

quadrature in the general case. At the same time_ in solving missile guidance

problems (and many others), the principal objective of the investigation is to

determine the effect of the control system parameters on the characteristics of

missile motion and in the selection of optimum values of these parameters. Ob-

viously_ this problem can be most completely solved in the case when we have

the general solution of the equations which describe the motion of the missile_

and when the relationship between the parameters and the characteristics of

motion are expressed in analytical form. In the general case_ in order to ob-

tain the general solution of the problem_ it is necessary to make simplifications

and sometimes to neglect very significant factors. Of course_ the general solu-

tion obtained in this way will be vary approximate in describing the true sys-
tem.

_)

A

I I I_

Figure 2.18. Typical graph showing variation in

coefficients of the equations of motion for mis-

sile with homing guidance.

It is necessary to point out_ however, that in connection with the tremen-

dous new possibilities of solving the problem exactly by means of computers_

the role of such analytical methods becomes more and more important. These

methods give, although with some difficulty_ at least a true qualitative solu-

tion of the problem in the general form, which gives us a basis for selecting

the direction of more accurate investigations by means of computers.

The behavior of a linear nonstationary system is described by an equation

of form (2.1), but the coefficients ak and bk of this equation are functions

of time. The variation in the variable coefficients of the equation as a func-

tion of time describing_ e.g._ the motion of missiles with homing guidance, may

be expressed by a graph, as shown in figure 2.18. Over region A, which corre-

sponds to a long range to the target_ the coefficients vary slowly. In analyz-

ing the dynamics of the missile along this section, it is possible to use the
method of fixed coefficients such that the value of these coefficients is taken

to be different for different instants of time. The nature of missile motion

for different values of the coefficients shows qualitatively how the variation

in the coefficients affects the dynamics of the system. Along region B_ where

the variation of the coefficients is more appreciable_ we use the method of

quasistationary coefficients. These coefficients are constant but are not

equal to the fixed coefficients for a given instant of time. The quasistation-

ary coefficients are computed by means of special equations. One of the methods
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TI_LE 2.6. TRANSFORMATION OF NONSTATIONARY COEFFICIENTS INTO

QUASiSTATION/_RY.

Initial Transformed Value of quasistation-

equation equation ary Coefficients

dx

a- -F ox : 0
dt

d2x dx

a-- + +cx=O
dl 2 . b "_

a = ccnst

dx

A-_+ Bx--O A -----%; B = bo.

a_7;+_-z-+cx=o A=,_o;B=bo+-- --;

C _c o ..

d2x dx

a d-i-2 + b --dt -1-'cx = O,

c -= const

dax " d2x dx

" +dx = 0

a _ COnS,_

d=x dx ,

A.--:-._+ B --:-.+ c_ = o
alz at

d3x d2 x • •

dx

+ c-di-+ Dx=O

I

A = %'B = bo -- "_- qx',...

• C----c o
, (

dt .

,4=a o, B= b o-{-a_oo ,

1 4

c = Co--y b_+ -_--Oo.X.

d, 2 a_ "
X ---}- _.; D=do.

do 9 d_

a,x d"-x dx

adl----_+b_ ' C

.+dx= 0
d = Const

#x d=x

A_+ _+

+ C dx
+ o,.=o

A=%; B:bo--ax;
• 1 1

C=co-yb,--T .o x

a o 9 a 2 D

D = do;

d_x dax d2x

dx
' --+ex= 0

-T-.d dt

a _- CO[lSt

Note:

Aa'x -t-B d'x .d=x,+. ,
dx

+ o_+E.=o

3 8 I

A = %;B = bo +.T a° -;
eo

2 • 11 e_

C = co -. _" b_ + _ bo -- ;
eo

;
3 ex . E:

'+7 -'-c°eo ' "

ao=a (t)t=t; bo --= b (l)t=to , etc.

(?,) (?)a I = ; bl =
l=lo t,.to etc .

e0 °

for calculating these coefficients is shown below. Thus, along regions A and B

missile dynamics is described by linear equations with constant coefficients,

whose analysis was carried in sections 2.2 and 2.3. Along region C, when the

missile is close to its target, the variable coefficients of equations which

describe its motion vary so rapidly that, except in the rare cases pertaining
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to the equation of the first or second order, the solution may only be obtained

by numerical methods or by simulation with analog computers.

We present data for one method of calculating the quasistationary coeffi-

cients for region B. I These coefficients are computed by means of special equa-

tions which take into account the rate of change of the variable coefficients

of the initial equation (first derivative).

Table 2.6 gives formulas for calculating quasistationary coefficients for

the differential equations from the first to the fourth order.

Section 2.5. Statistical _ynamics of Linear Systems

When investigating missile guidance systems; it is always necessary to

evaluate the behavior of these systems when subjected to random fluctuations.

The sources of fluctuations are the internal noise sources aboard the guidance

system, the fluctuation of signals which carry information concerning the co-

ordinates of the target and the disturbances produced by the atmosphere. Specific

problems on the effect of various random disturbances on the motion of a missile

will be considered in subsequent chapters. In the present section we present;

in condensed form;the necessary general facts concerning the behavior of linear

systems when subjected to random perturbations. The random perturbations which

act on the missile are usually random functions of time. A random function is

one whose realization as a result of experiment has a random character; i.e.,

cannot be predicted in advance.

i. Stationary Random Processes. Let us first consider one class of random

functions which is of prime importance in most of the applied problems--the class

of stationary random functions. A random function is called stationary if all

of its probability characteristics (determined below) do not depend on time.

The mathematical analysis of stationary functions is relatively simple 3 and the

calculations which are based on this method can be carried out rapidly. It is

sometimes convenient to assume that the function is stationary over small in-

tervals of time; when we analyze nonstationary random functions whichvary slowly.

An additional limitation; placed on stationary random functions and con-

sidered later; is the assumption that these functions are ergodic. A random

function has ergodic properties when the probability characteristics; obtained

by averaging out over the period of one realization (over a sufficiently large

interval of observations), coincide approximately with characteristics obtained

by averaging over a multiplicity of realizations (when the time is fixed).

The basic probability characteristics of a stationary random function x(t)

with ergotic properties are determined by the following expressions.

_ne mathematical expectation or the average value is equal to

ip. E. W. Grensted, Stability Criteria for Linear Equations with Time--Varying

Coefficients, R. A. S., No. 3, 1956.

57



r

x (t) = r-.-lim 2rl f x (t) dt
--r

(when T is sufficiently large).

(2.25)

The dispersion or the average square of the function is

r

2 -_-Xo2 (t) -- _,, -- !ira x o (l) dr, (2.26)
_...* or,

where x0(t ) = x(t) - x(t) is the balanced random function.

Later in this section we shall consider only balanced random functions;

therefore_ for convenience_ the subscript used to designate these functions will

be dropped.

The correlation function which characterizes the degree of coupling between

the values of the random function at the instant of time t and t + • is equal to

r

Rx (z) = x_(t). x (t "F _) = r_llm. I._]__2T_ x (t) x (t + _)._dr. ( 2.27 )
--T

By comparing equations (2.26) and (2.27) we see that

R, (o) :: o_. (2.28)

A direct Fourier transformation of the correlation function gives the

spectral density of the random function. I

2iSx (o,) -- 1_ Rx (x) e-i,o: dx -- _ Ra (_) cos o,_ d_.
_co ,. O

(2.29)

The spectral density characterizes the frequency distribution of the power

of random function x(t). Since power cannot be negative 3 the spectral density

too is a positive function in the entire range of frequencies from 0 to ±

If we know the spectral density of a random function_ we can use the inverse

Fourier transformation to obtain the correlation function

R,, (_)= -y s (_) eZo' d,o= S (_,)cOS,_ do,.
• .

2._o)

lit is necessary to point out that in Fourier transformation equations other

coefficients are frequently used in front of the integral; this should be

taken into account when carrying out calculations.
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In equations (2.29) and (2.30) the lower limit of integration is replaced

by zero (in place of - _) with a simultaneous decrease by 2 in the averaging

interval. This is possible because the correlation function and the spectral

density are even functions. By comparing equations (2.30) and (2.28) we obtain

the relationship

(2.3l)
0

The analytical expressions for the correlation functions and the spectral

densities of random stationary processes may be quite diverse. As an example

we introduce the random process known as "white noise" or "the absolutely ran-

dom process." The spectral density of such a process is constant in the entire

region of frequencies, i.e. 3

,_e(_) -- S,, (0) - const. (2.32)

Equation (2.32) clarifies the origin of the term "white noise." Indeed,

the physical analogy of such a random process is the "white light," whose

spectrum contains the oscillations of all the frequencies with the same ampli-
tude.

The correlation function of "white noise" may be obtained from its spectral

density by using equation (2.30) . This gives us

R° = =s. (o) (2.33)

Equation (2.33) clarifies the origin of the second term used to describe

this process--"absolutely random process." The correlation functions of the 6-

function type points to the absence of correlation between any arbitrarily close

values of the random process.

It is necessary to point out bhat a random process of the "white noise"

type is a mathematical idealization of a real process, because physically it is

impossible to realize such a process. The dispersion of this process, as follows

from equation (2.31), will be infinitely large. Consequently, the power required

to produce such a process is also infinite. In spite of this, in those problems

where the spectrum of random reaction substantially exceeds the bandpass of the

system under investigation, the true spectrum may be replaced quite successfully

with "white noise." However, if this relation between the spectra of reaction

and of the system is not satisfied, the necessary spectrum may be obtained by

passing "white noise" through a shaping filter.

Now let us analyze the reaction of linear stationary systems to perturba-

tions of the random stationary function type. This reaction may be determined
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by utilizing the expression for both the correlation function and the spectral

density of random perturbation. The respective equations are presented here

without proof. I

The stationary linear systems are described by an equation of type (2.1).

If the input or perturbed quantity x(t) is a unit function, the output quantity

or the reaction of the system y(t) is called the transient function and is de-

signated by H(t). However_ if input quantity x(t) is a 6 function, the reaction

of system y(t) is called the pulse transient function or the weighting function

and is designated by K(t). Functions H(t) and K(t) are associated by the follow-

ing relation

K(0 = dn(0
(2.34)

If an arbitrary function of time x(t) is applied to the input of the sys-

tem, reaction y(t) of a stationary system is determined by Duhamel's integral

The lower integration limit (2.35) shows that in the general case signal

x(t) may start to act on the system when _ = - _. The upper integration limit

shows that the reaction of the system is due only to those values of x(t) for

which _ _ t. This limit may be replaced with infinity if it is convenient_

because for any real system K(t - 7) = 0 when _> t.

In subsequent discussions it is more convenient to use a form of Duhamel's

integral obtained from (2.35) by changing variables (with the associated change

in the limits of integration)

/69

v(0= iK x(t- (2.36)
0

Expression (2.36) will clarify the meaning of the term "weighting function."

Indeed, y(t) at the instant of time t is a weighed sum (or integral) with respect

to values x(t), which exist • seconds before the instant of time t.

1V. S. Pugachev_ The Theory of Random Functions and Its Application to the Prob-

lems of Automatic Control_ Fizmatgiz_ 1961;

J. Kh. Lening and R. G. Bettin_ Random Processes in Automatic Control Problems 3

Foreign Literature (I. L.), 1958;

V. V. Solodovnikov, Statistical Dynamics of Linear Automatic Control Systems,

Fizmatgiz, 1960.
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If we apply to the input of a stationary linear system a random stationary
function x(t), whosecorrelation function is Ry (T), the correlation function of

the output quantity Ry (_) is given by the expression

0 0 •

(2.37)

Using equations (2.28)and (2.37), when • = 0, we obtain the dispersion of

the output quantity of the system

i i
0 0

(2.38)

If input function x(t) is applied to the system when t a O, i.e., the lower

limit in (2.35) is zero, the upper limit in (2.36), (2.37) and (2.38) may be

replaced by t. It is possible to retain infinity as the upper limit under these

conditions_ because this will not affect the results of the calculations.

The relation between the spectral density of input perturbation S
X

output quantity Sy (w) has a much simpler form

(_) and

sy (_) = % (/,o)% (- 1,,,)s. (,'0 = 1% (1o,)I_s. (_), (2.39)

where _ y(jW) is the complex transfer closed loop function of the system to

which the random perturbation x(t) is applied.

If the system has no feedback (if the feedback loop is open or does not

exist), then in expression (2.39) instead of @ (j_) we substitute the transfer
Y

function of the system without feedback, designated by W(jw), equation(2.4).

On the basis of equations (2.39) and (2.31), the dispersion of the output

quantity is equal to

•o_ 1% (i_)1-'s. (_)2_i (2.40 )
O.

The calculations used to determine dispersion in accordance with equations

(2.38) or (2.40) are rather complicated. The amount of time required to perform

these calculations increases substantially if it is necessary to determine the

dispersion by using the different parameter variations of the system. Therefore_

it is of interest to describe a method of determining the dispersion in station-

ary linear systems by means of analog computers (simulation).

/7o
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Simulation is a method of studying any phenomena in which the true system

is replaced by a simpler system (model)_ and when some of the phenomena in the

model satisfy the same analytical relations as the true system. Usually simu-

lation is performed by using conventional electronic or electromechanical com-

puters--integrators. These computers comprise a collection of units which per-

form the functions of addition_ subtractio_ multiplication and division and

also integration and differentiation. Special units are used to reproduce

quantities which vary in time in accordance with a preestablished law 3 and also

to reproduce various nonlinear characteristics.

Simulation of missile guiding systems .may be purely mathematical or may be

hybrid_ when one part of the system is simulated while the other is a true pro-

totype. When simulation is p_rely mathematical, all elements of the control

system and of the coupling between them are replaced by mathematical relations.

In this case it is possible to take into account both the nonlinear character-

istics of individual elements of the system as well as the variation in its

parameters with time. The mathematical relations obtained, which represent a

conventional system of integral-differential equations_ are reproduced by select-

ing corresponding units of the integrator; then the behavior of the entire con-

trol system is investigated for different initial conditions and external

forces. If the operator so desires, he may examine by oscilloscope or record

the nature of variation of any coordinate of the system.

The mathematical'principles for utilizing analog computers to determine the

dispersion of any output quantity of the dynamic system under consideration

follow from comparison of expression (2.40) with the Parseval equation, some-

times known as Rayleigh's theorem

v'(0 = I'1% Pg,:,. (2.
J

where y(t) and @ (t) must be related by the Fourier.transformation.
Y

Since the spectral density is a real_ even, and nonnegative function of

w_ it may always be approximated by the fractional-rational function with real

coefficients containing only even powers of _. Consequently_ the spectral den-

sity of the input quantity may be represented in the form

s. (o,)= !w, (2.42)

where Wx(JW ) is the transfer function of the element used to obtain the image

of the spectral density in the region of the prototypes. I Substituting (2.42)

into (2.40) we obtain the following expression for dispersion

Au

iThis element is known as the shaping filter.
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i I" _ (2.43)o2,= 1.%(D) o, I_, (lo,)I:c_o.
0

By applying Parseval's formula to equation (2.43), we establish a relation

between the unknown dispersion of the output quantity of the system and the in-

tegral quadratic evaluation of function y(t)

2 l il%,$/_W_,(]o>),y(],o)12d,o=.:v2(t)dt"ay --- ----_

(2.44)

Expression (2.44) shows that y(t) is a pulse transient function of the sys-

tem whose transfer function is given by expression

w;. (10 :: o.,VY w, (t,) % (;).
(2.45)

When carrying out simulation by means of analog computers_ it is convenient

to use the unit function as the perturbation instead of the 6-function. On the

basis of (2.34) we may state that y(t) will be the transient function of the

system whose transfer function is obtained from equation (2.45) by multiplying

it by p, i.e.,

w., (p) = 0_ W_ ;i_ (p) o_ (p). (2.46)

The functional diagram showing the simulation of y(t) is shown in figure

2.19a. To obtain dispersion_ _ as follows from expression (2.44), it is suf-

ficient to square y(t) and to integrate it. The corresponding functional dia-

gram consisting of a multiplying unit and an integrator is shown in figure

2.19b.

In conclusion, it is necessary to consider the methods of simulating a sys-

tem whose transfer function contains zeros. Such transfer functions usually in-

clude the function of the investigated system @ (p), and sometimes the function
Y

_I;)_--_ L% (p) _

a

b

Figure 2.19. Functional diagram showing simulation of the

system with a random input signal, a--functional diagram

for obtaining output quantity; b-=functional diagram for

squaring and integrating.
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of the shaping filter Wx(P). As we kno_, the presence of zeros in transfer func-

tions of a system, whose input is subjected to a unit function, is associated

with the occurrence of the 6-function and its derivatives in the right side of

the differential equation of the system. A solution of this type of equation by

means of analog computers is usually reduced to the solution of homogeneous

equations with nonzero initial conditions. The inconvenience of this method is

that when the parameters of the system are varied the control coefficients vary,

and consequently the initial conditions also vary_ because they are related by

recurrent relationships with the coefficients. When the number of zeros is

large, the calculations and the introduction of initial conditions become very

difficult. We shall describe a simulation technique free of these disadvantages.

Let us assume that the investigated dynamic system is described by non-

homogeneous differential equations written in symbolic form.

(pn .+ a,__ l If-I q- ... --i- a,p q- ao) y(I) --"

-- (b,,,p" -t- b,,,=lP "'-I + . .. --t- bip -t- bo) x (t).

where n > m.

If we divide the left side and the right side of this equation into a

characteristic polynomial 3 we obtain

f-"+' +Oo z(t),

where z(t) is an auxiliary function given by expression

== pnx (t)
2 (t) p,_ + an_ipn_l ._. . .__ alp..__ a °

or
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z(t) -- x(t)--, a,__l -- -t- ....q-aXp--_-T_l -t-a op z (t).
(2.48)

Equation (2.48) is used to construct the functional diagram whose output

contains auxiliary function z(t). Then, on the basis of equation (2.47), a

general functional diagram is prepared for obtaining the output quantity of the

system y(t). This diagram is shown in figure 2.20. This method makes it

possible to simulate systems whose transfer functions contain zeros without in-

troducing nonzero initial conditions.

2. Nonstationary Random Processes. Let us consider the general expression

for the output quantity of a nonstationary linear system, subjected to nonsta-

tionary random forces. For any reaction



Figure 2.20. Functional diagram showing simulation
of a system whose transfer function contains zeros.

I

u (0 = .I (t., .,: (2.49)

where input quantity x(t) may be determined in the interval -_ _t _. The out-

put quantity may be any coordinate of the guided missile which is of interest to

us, in particular it may be one of the coordinates of the center of gravity_
which can be used to measure the miss of the missile.

It is necessary to point out that equation (2.49) for nonstationary systems

is different from equation (2.35) for stationary systems. In the case of sta-

tionary systems_ the pulse transient function depends only on the difference be-

tween running time t and instant of time _ at which the 6-function is applied

to the system. It is obvious that in the nonstationary system the pulse tran-

sient function is not a function of the difference (t - _), but of both these

variables_ because in this system the nature of the system's reaction depends

on the time when the 6-function is applied to the system. The pulse transient

f_nction K(t,T) may be represented in the form of a surface in the rectangular

system of coordinates t, _ (fig. 2.21). Since in real systems the output signal

cannot appear before the input signal_ the following identity is valid

g(t,_)_0 when t<_.

If x(t) is a random function of time_ the mathematical expectation of the out-

put quantity is given by expression

where x(t) is the mathematical expectation of the input perturbing function.
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The correlation function of output quantity Ry(tl,t2) may be computed by

means of the following equation from the known correlation function of input

quantity Rx(tl,t2)l

Ry(q, t2) = K (q, _) _ K (t2, ,2) _. (_, _2)d_2. (2.51)

To obtain the dispersion of the output quantity_ it is sufficient to let

tI = t2 = t in equation (2.51)

/ t t '

Equations(2.50) - (2.52) refer to the case when one input signal is applied

to the system. For a missile control system it is of interest to determine the

output quantity (e.g., the miss) when a large number of input signals are applied

simultaneously--random signals and nonrandom signals.

if n input signals xl(t), x2(t),... , Xn(t ) are applied to a nonstationary

linear system_ the output quantity: if we use the principle of superposition as

applied to linear systems_ will be given by the expression

Am

k_ 1.--=

The correlation function of output quantity Ry(tl, t2) may be determined

by means of the following equation in terms of the correlation functions

Rxk(tl,t2) and reciprocal correlation functions Rxjk(tl,t2)

" S'
• 1=1 k-l--_ --_

(2.53)

if all n of the input functions are statistically independent and have zero

mathematical expectations, then in equation (2.53) the terms with various sub-

scripts (j /k) will be equal to zero

iEquation (2.51) is analogous in principle to equation (2.37) for stationary

systems.
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Figure 2.21. Curves of pulse transient function of

nonstationary system..

Assuming that in equation (2.54) tI = t2 = t, we obtain the dispersion for

a special case when the reactions perturbing the system are statistically in-

dependent

So_,(t)= K_(t.4,)a,, K_(_.,_),%,,(,,. ,_),_, - (2.55)
k= I --_ --.

or

o_(t)= o_,it)+ o_,(t)+...+ o_,,(t). (2.56)

Expression (2.56) shows that in this special case the dispersion of the oat-

put quantity is equal to the sum of the dispersions due to the individual reac-

tion of each input signal.

Finally_ let us consider the case when a nonstationary system having non-

zero_ but random initial conditions is subjected_ at instant t = 0_ to a ran-

dora perturbing function x(t). The correlation function for the output quantity

in this case is given by expression

n n 1 .

1-1_=1 l-, o

1-i 0

+ i:K}t'; "" " " " :
0 0

(2.57)
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Figure 2.22. Functional diagram showing simulation

of nonstationary system.

where uj(t) is the output function of the system due to the jth nonzero initial

condition, which is equal to unity when the other initial conditions are equal

to zero; and c. is the random value of the jth initial condition.
O

Averaging in (2.57) is carried out over a multiplicity of possible combina-

tions of initial conditions. In a special case, when the initial conditions are

statistically independent and also do not depend on the perturbing function and

have zero average values, the expression for the dispersion of the output quantity
has the form

t t

= 2 ]"
k-I o o.

The equations which we have presented for the analysis of nonstationary

linear systems, subjected to random perturbations, are extremely complicated

and in practice do not make it possible to carry out an analytical investiga-

tion of these systems. Therefore, these equations are usually used to substan-

tiate some method of statistical analysis by means of analog or digital com-

puters. I The following is one of the methods of simulating such systems. The

simulator of the system is fed with a sequence of a large number of realizations

of random reactions, and the realizations of the random process showing the

variation of the output quantity of interest to us is recorded. By reducing

the large number of realizations of the output quantity obtained, it is possible

to obtain the desired probability characteristics of this quantity. In the prob-

lem concerning the flight of a guided missile, the greatest interest obviously

will be in the probability characteristics (mathematical expectation, dispersion)

of the miss distance of the missile with respect to the target.

The method which we have described for studying the reaction of random

perturbations on a nonstationary system has a series of definite advantages. It

may be applied to a system of any class, including a nonlinear system, and makes

it possible to obtain accurate data on the characteristics of the investigated

system. The disadvantage of the method is the necessity of having a large

number of realizations of perturbing reactions and some complexity in introduc-

ing these realizations into the simulator.

In conclusion let us consider a simulation method for obtaining the dis-

persions of a nonstationary system, subjected to a stationary random pertur-
bation.

/77

IN. P. Buslenko, The Method of Statistical Investigation, Fizmatgiz, 1962.
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The functional diagram of a system using a machine simulator is shown in

figure 2.22. Because the parametersof the system vary with_time, instead of the

transfer function, we introduce the operator of the system @y(p,t). The trans-

fer function is a special case of the operator when the system changes from a

nonstationary one to a stationary one. Because the input signal is stationary,

the transfer function of the shaping filter _ (p), remains as a fractional-
x

rational function p and is determined from the spectral density of the input

signal by means of (2.42). This transfer function (fig. 2.22) is multiplied by

p; therefore_ the pulse transient function at the output of the system will be

obtained when a unit function rather than a 6-function is introduced at the in-

put. A perturbation of the unit function type is easier to realize in simulators.

Figure 2.23. Intersection of

surface K.v(t, 7) by plane _k =

const.

Figure 2.24. Intersection of

surface Ky(t, T) by plane tk =

const.

Let us designate by Ky(% 7) the pulse transient function for a system'con-

sisting of a shaping filter and the investigated nonstationary system. Such

pulse transient function may, in principle, be obtained for any output quantity

of the system y(t). The dispersion for this output quantity is obviously given

by equation

t

' "o,(0= (2

To determine dispersion q _(t) by the method of numerical integration, it

is necessary to obtain function K _(t, _). For this purpose_ in the schematic

diagram of figure 2.22 we shall introduce a unit function q i(_) at different
x

instants of time _. The physical introduction of a unit function at various

instants of time T means that as time • changes 3 the parameters of the system

_-y(p, _) also change. At the instant of time for each application of theTk

unit function at the input of this scheme we obtain a reaction at the output

69



0123_56

f'k

I Z J ,_ .5 6 '_"

Figure 2.25. Graphical method for obtaining character-

istics of Ky(tk, T).

which is equal to the pulse transient function Ky(t, Tk). Such a reaction is a

function of time t and of time instant 7k when the unit function is applied. What

we have stated is clarified in figure 2.233 where the intersections of surface

K .(t, 7) are shown by vertical planes parallel to the t axis For each value of
y

Tk there is a different intersection and consequently a different curve Ky(t, _k ).

According to equation (2.59), to compute the dispersion of the output quantity

for a given t = tk, it is necessary to obtain curve Ky(tk, _), i.e., the in-

tersection of surface K .(t, T) by a vertical plane parallel to the • axis (fig.

2.24). Figure 2.25 illustrates how this curve is obtained graphically from a

family of curves Ky(t, Tk) , recorded experimentally (fig. 2.22). Function

Ky(t k, _), obtained graphically, is squared and integrated. In accordance with

(2.59), integration gives us

Ik

o

(2.Go)

The lower limit of integration in (2.60) is taken equal to zero because,

during the experimental investigations, it was assumed that t _ O.

When investigating a missile control system, it is usually interesting to

know some coordinate of the missile on a definite plane which contains the tar-

get. In this case, the final purpose of the calculation is to obtain the dis-

persion of the output quantity of the system for a definite instant of time

t = tk by means of expression (2.60), if tk is the missile's flight time through

the indicated plane. If we are to determine o 2 as a function of time, the cal-
Y

culations in question must be repeated by as many times as there are points re-

quired to obtain the function _yCt)..-

/79
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Section 2.6. Method of the Phase Plane for Analyzing
Relay Systems

In missile control systems_ relay amplifying devices or other elements are
used which have characteristics of the relay type. If a control system has even
one such elemen% it is impossible to use the methods of analysis presented for
linear systems.

The method of the phase plane is widely used in investigating control proc-
esses in relay systems. This method is descriptive and provides for high ac-
curacy. The principal limitation of this method is that it can only be used to
describe nonlinear differential equations not greater than second order. The
investigation of systems_ described by equations of higher orders_ makes it nec-
essary to represent the processes taking place in them in the phase space_ which
becomesvery difficult to visualize.

Let us consider the basic principles of this method. The phase plane is a
plane which contains two coordinate axes (z_y), along which the variables char-
acterizing the transient behavior of the system are plotted. For these variables
it is convenient to take the deviation of the controlled quantity Y3 and the rate
of change of this deviation z = dy/dt. Let us assumethat the behavior of some
system is described by a nonlinear equation of the second order

: f [y'
(2.61)

/8O

We introduce the notation z = dy/dtj and represent this equation in the form of

two equations of the first order

dt

dz

-- = f: z),
dt

(2.62)

where in the general case fl_ f2 are nonlinear functions.

The solution of (2.62) gives the law for the time variation of the deviation

y and its velocity z. Both expressions may be considered as differential equa-

tions in the parametric form of some curve in the plane y_ z_ where the param-

eter is time t. By dividing equation (2.62) term by term (eliminating the param-

eter t)_ we obtain the differential equation of this curve on the phase plane.

_ A(y, (2.g3)
@ A (y. z)"

Integrating equation (2.63), we obtain the equation for the integral curve

z = F(y_ c) on the plane. Curve z =F(y, c) is called the phase curve or the
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Figure 2.26. Phase trajectory.

b--selfsustained oscillations.

s m

/

b

a--damped oscillations;

phase trajectory of the system's motion, where c is the integration constant

which is determined from the initial conditions. The possible form of phase

trajectory is shown in figure 2.26. Some point m on the phase plane with co-

ordinates Ym' Zm' known as the image point, characterizes the state of the sys-

tem at the particular instant of time. The transient process in the system will

be characterized by the movement of point m which describes a curve--phase tra-

jectory--as the transient process takes place in the system (fig. 2.26a). Count-

less numbers of initial conditions determine a countless number of phase tra-

jectories. Because the differential equations have a single-valued solution for

definite initial conditions, the point tracing the phase trajectory will move

along a definite curve, and when external forces are absent, it may go over to

another trajectory.

in a stable system, whether linear or nonlinear_ the transient process is

damped out and for t_ _y_O and z _0. This means that in a stable system the

tracing point will always move alongthe phase trajectory towards the origin of

the coordinate system. Figure 2.26a shows the phase trajectories of a stable

system.

If the transient process has an oscillatory type of damped motion, then the

tracing point will approach the center of coordinates in a spiral, because the

magnitudes of the deviations and the velocities change their signs and decrease

in absolute value. If the system can sustain undamped oscillations, i.e., if the

equation of the system has a periodic solution, the tracing point will move con-

tinuously along some close loop (fig. 2.26b). One revolution of the tracing

will obviously be equal to one period of the selfsustained oscillations. In an

unstable system the tracing point moves from the origin of the coordinates, i.e.,

the deviation and velocity increasewithout limit.

Having presented these general principles, we shall analyze the control

processes in specific systems by using the method of the phase plane. Let us

consider a nonlinear (relay) system, schematically represented in figure 2.27.

This system occurs, in particular, in a tracking system with a relay amplifier,

in a system for stabilizing the tilt angle of a missile with relay control and

in a series of other systems.

/81
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Figure 2.27. Functional diagram of a system
with a transfer function in the linear part,
given by (2.64).

In figure 2.27 F(_) designates the characteristics of the nonlinear element
from which the signal is applied to the linear part of the system with a trans-
fer function

w(?) = k
(T:+ _)?" (2.64)

where T and k are the time constant and the amplification factor of the sys-

tem, respectively.

i. Analysis of Simplest Relay Servosystemwith Ideal Characteristics. Let

us consider the processes in a system containing a nonlinear element with idea-

lized characteristics (fig. 2.28). A relay device will have such a character-

istic, if its sensitivity is large. We shall neglect the delay in the operation

of the relay. The functional diagram of a system with these characteristics is

shown in figure 2.29.

Figure 2.28. Idealized relay

characteristic.

k

( Tp+ 1)p

Y
I

Figure 2.29. Functional diagram

of system with relay character-

istics (fig. 2.28).

Let us write the equations of motion of the system and analyze the effect

produced by input signal x. The equation of the linear part of the system has
the form

T :__,i-I-dy _-ku. (2.65)
dt _ dt

Signal u_ applied to the linear part of the system is constant in magni-

tude, and its sign is determined by the sign of the mismatch, i.e.,

u = U slg,__. (2.66)
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This expression is a symbolic designation of the step function shown in figure

2.28. We note that equation (2.66) may be represented in the form

=:u . (2.67)
I,I

If we add to equations(2.65) and (2.66) the equation which determines the mis-

match

• = y, - (2.G8)

we obtain a system of equations for a simple relay system.

if we eliminate _ and u from equations (2.65), (2.66) and (2.68), we ob-

tain a relationship between the input and output quantities of the servosystem

in the form of a nonlinear differential equation

T d2ydt.-} @at kU sign (x -- _) = O. (2.69)

First let us consider the case x = const. In this case, without disrupting

the general nature of the investigation, we may assume that x = O. Also, if we

note that sign (x - y) is an odd function, i.e., sign (-¢) = - sign (¢), _e ob-

tain the equation of the system in the following form

T a"-y + @
dt_ -_- + eo sign y = O,

(2.70)

where w0 = kU.

Equation (2.70) contains the specific parameters of the system T and w0. In

order that the subsequent investigation retain its general character, it is nec-

essary to write it in standard form.

If we take into account the obvious property of the function sign (ay) =

sign (y), where a is any positive number, we obtain

d_ + dTj. (2.71)
d_2 d'_

t . -- Y is the dimensionless value of the
where _ =-_ ms the dimensionless time; y = Tw-'-'O

• _ - •. d_'.q T d2y
output quantity; a__j I dy is the dimensionless ve±ocz_y; _ = is the /84

d_ o% dt % dl 2

dimensionless acceleration and X = - sign _ .

We note that

_= | when y< O,

=--| when y> O.
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Also_ noting that d_/d_ = _, we obtain two equations of the first order in

place of (2.71)

• d_ .

e_ =L

(2.72)

If we eliminate the independent variable _ from (2.71), we find the equa-

tion which relates z and

d_ _ _ (2.73)

ey

After integrating (2.73) with initial conditions T = O, y = YO and _ : 30,

we obtain the equation of the phase trajectories

When _ < 0 X = i, i.e., for the entire left part of the phase plane; we have

N

Y= Uo+ zo--_4- in 1-_o
_. (2.75)

When _>0X = -i, i.e._ for the entire right side of the phase plane, we have

Figure 2.30 shows the phase trajectories constructed in accordance with

equations(2.75) and (2.76) with initial conditions _0 = 0 and y0 = Oa 0. Region

aob I is constructed in accordance with equation (2.75) _ and region blalb 2 is

constructed from equation (2.76), while region b2a2b 3 is constructed from (2.75).

The initial conditions for the second region are _0 = O, Z0 = 0b I and for the

third region they are Y0 = 0, = 0b2, etc. As we continue to construct the

phase trajectory in sections_ we note that we obtain a curve which converges

towards the origin of the coordinate system. This means that the system is

stable, and that it has a transient process with damped oscillations. The phase

trajectory of the process has breaks on the axis of the ordinates. These breaks

are due to the change in the sign of control signal U at the output of the relay

element.
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Figure 2.30. Phase trajectories constructed in accord-

ance with equations(2.75) and(2.76).

Let us find the relationship between output quantity _ and its rate of

change _ with time. The solution of the first equation of system (2.72) with

initial conditions _ = O, _ = _0 will have the following form

z = zoe-_ + x (1 --e,_). (2.77)

If we integrate the value of _ obtained by means of this equation_ we find _ as

a function of

_= _ _ _- c = -- _e -_ + _ + _e-_ + c.
J

We determine the arbitrary constant from the initial conditions, assuming

that for • = 0 _ = Y0' _ = z0" In this case

N

and

= go+ _o(I-- e -_) + z[_-- (1--e-')].' (2.78)

On the basis of (2.77) and (2.78), by aligning the initial conditions, we

may construct a curve showing the variation in _ and _ as a function of time.

The time variables _ = _ (_) and _ = _ (7) may also be obtained from the

phase picture of the system's motion. To determine the time it takes for the

tracing point to move from position i (coordinates _i' _i ) to position 2

(coordinates Y2' _2 ) (fig. 2.31), we add equations (2.77) and (2.78) replacing,

respectively, Z--o, _0 by _12 _i and _, _ by 32, _2" Then we obtain

or

1

-g.

1

. _ . (2.79)
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Figure 2.31. Determining time

variation from phase picture of

system.

• /

Figure 2.32. Transient process in

system with phase picture sho_m in

figure 2.30.

The time increment Aml_ 2 is ecual to the sum of the increments in coordi-

nates A_ and A_. Coordinated A_ and A_ must be taken with corresponding signs.

From expression (2.V9) we also obtain a method for determining graphically the

time during which the tracing point is displaced from position i to position 2.

To do this_ it is merely necessary to draw two straight lines to points i and 2

(in any quadrant) at an angle of 135 o with respect to the _ axis. These two

straight lines will intercept a segment on the _ or _ axis whose value will be

equal to the unkn0wn-time A_I,2, if the scale of the _ axis is the same as the

scale of the _ axis.

Figure 2.32 shows the variation in _ and _ as a function of time. These

curves correspond to the phase picture shown in figure 2.30. Figure 2.32 also

shows the variation in X , i.e., the switching of the relay amplifier of the

system. It also follows from these graphs that the switching frequency in-

creases continuously and tends to infinity in the limit. Thus_ in the state

of rest_ the system will be characterized by oscillations of infinitely high

frequency and infinitely small amplitude. This result is explained by our

assumption concerning the instantaneous response of the relay element.

2. Processes in a Relay System with Delay. Real relay elements are un-

able to reproduce an input signal of infinite frequency. Each relay element

has a limiting frequency at which it still operates. The time which elapses

from the application of the signal to the input of a relay element until a

signal appears at the output is called the delay time and is designated by t 3.

The functional diagram of a system taking into account the delay produced by

the relay element is shown in figure 2.33. Here e-t3p is the transfer func-

tion of the member with constant delay.

As before_ we write the equation of motion of the system in dimensionless
form
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+ + G) = o, (2.8o)
d_2_ d-_-

where AT : t3T is the dimensionless delay time; and sign&T (if) is the step func-

tion analogous to the one shown in figure 2.28, but delayed by time AT.

If we let sign AT (_)= -X in (2.80), we obtain the same equations as in the

preceding case, i.e., equations of the form (2.72).

Figure 2.33.

• y
Functional diagram of system with delay.

The effect of delay causes X to vary from -i to +i, not on the axis of the

ordinates, but at some point b I (fig. 2.34 ) . If we know the delay time, we can

always use this method (fig. 2.31) to determine the switching point. The phase

trajectory, constructed by taking into account the delay (fig. 2.34), does not

tend towards the origin of the coordinate system, but converges to some cycle.

This means that the system will be subject to selfsustained oscillations. The

curve in figure 2.34 was constructed with an initial deviation, greater t_an the

amplitude of the steady state oscillations. If the initial deviation is less

than the amplitude of the selfsustained oscillations (less than_m), the phase

trajectory curve will unwind, and the same cycle will be reestablished. Regard-

less of the initial conditions, the phase trajectory will converge towards the

same cycle, which is therefore known as the limiting cycle.

Due to delay, the breaks in the phase trajectory are displaced to the right

in a clockwise direction with respect to the axis of the ordinates. It is possi-

ble to show that the s_zitching line (the line containing the breaks in the tra-

jectories) also remains straight (fig. 2.35) , with a slope _, and intersects the

axis at a distance a from the origin of the coordinates.

By using the methods for measuring time on the phase plane, we can proceed

from the picture in the phase plane (fig. 2.34) to curves showing the variation

in the processes with time. The processes corresponding to such a phase picture

are shown in figure 2.36. These curves, as well as the phase pictures, show the

principal parameters of selfsustained oscillations:

i

period of selfsustained oscillations e or frequency _ ;

maximum value of deviation __;
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maximum value of velocity --Zm,-

value of velocity z = zl,at the time when y = 0;

value of deviation _ = 71 when : = _ .
m

The cycle of seifsustained oscillations is formed by two curves, described

by equations (2.75) and (2.76). In view of this, all of the parameters of self-

sustained oscillations are associated by single-valued relations. It is suffi-
cient to know one of them to determine the other four.

Figure 2.34. Phase trajectory of

system with delay.

:I °I

Figure 2.•35. Switching lines.

z axis--switching line without

delay; l--switching line with

delay.

To determine the parameter of the selfsustained oscillations, it is nec-

essary to express one of the parameters in terms of the delay. It is simplest

to express velocity_ I in terms of the delay at the time when _ = 0. By making

a more detailed analysis ofhow _hese selfsustained oscillations are established_

it is possible to obtain the relationship between AT and _i in the form

-: )_ g_-_ 1l-_V I__(I__zi= in . (2.Sl)

m m

If we know zland make use of (2.75), we obtain zm

• -T "

z,_ = 1--(I --z, ) e-A'.,
(2.82)

if we consider the cycle of selfsustained, oscillations; using the rules

for measuring the segments of time on the phase plane, we obtain an expression

for the period of the selfsustained oscillation @
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We find the amplitude of deviation Ym by making use of expression (2.75),

substituting the initial values _0 = -_m and T 0 = 0 and the final values _ = 0

and 7 = z-I - 1
ty,_-_ In z t .

l-_ (2.84)

z;y

×(v,_
",-I

_C_/_ ._ _. .

j_yj -:

"//////////_ y////////. :77772_,.t_:7._Y-/-__o e,

v-

Figure 2.36. Transient processes in system with self-

sustained oscillations.

Figure 2.37 shows _m' _m and I/G and the delay function on the basis of these /90

equations. The parameters of the selfsustained oscillations were computed under

the assumption that a closed cycle has been formed on the phase plane_ correspond-

ing to the selfsustained oscillations in the system. However_ actually we may have

only stable seifsustained oscillations_ which are represented on the phase plane by

the stable cycle. In the present simple case_ the stability of selfsustained oscil-

lations is obvious from the fact that all of the phase trajeetories_ which have been

constructed graphically_ converge to the same cycle_ whose parameters are determined

uniquely by the delay.

From the curves in figure 2.37 it follows that when the delay is small, the

period and amplitude are small. In most cases we may assume that the system has

such small oscillations. However_ the magnitude of the delay in relay devices is

usually such that selfsustained oscillations occur with low frequency and high

amplitude. The systems become inoperative_ and we must take measures to damp out

the selfsustained oscillations_ decrease their amplitude or increase their fre-

quency. This can be done by the following methods:

--by introducing an element with a region of insensitivity into the system;
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--by introducing compensating devices--negative feedbacks and differen-

tiating networks.

Let us consider these methods.

Figure 2.37.

- - 7
Ym;Zm;

 .oi1

0.5

0

8
I"

i

0.5 /.0 _ _;

and 1/_ in delay function.
Graphs of ym, zm

3. Effect of Zone of Insensitivity. Let us assume that the characteristics

of a relay amplifier have the form shown in figure 2.38. Here A_ represents the

zone of insensitivity. The schematic diagram of the system remains unchanged_

and only the characteristics of the nonlinear element are different. First, let

us neglect the effect of delay in the relay element. The equation of the sys-

tem with a region of insensitivity may be written

T d2--i -_- dy ._ ktt;
dt 2 dt

u=F(#; _=x--v;

tZ= U when _ > A_;

zt=--U when s <--Az;

u-----O when --Az<a<Ae.

(2.85)

In the case x = 0, the equation of the system will have a form which is

analagous to that of equation (2.71)

--5:+ =°. (2.86)
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Figure 2.38. Relay characteristic with region of

insensitivity.

The function F(_) has the following properties

]F (._) = -- 1 when Y > _q'

_- _._"
where _ = T---_o--_-_-_-o is the dimensionless value of the region of insensitivity

Ae; equal in this case to A-.
Y

Outside the region of insensitivity_ we designate as before F(ff) = X" Then,

for the region where I_ > [_I, we have

e_+ =,. (2.88)

For the region of insensitivity IY[< N we obtain

d_'-_+ _ = O.

(2.89)

The solution of equation (2.88) has already been ob_tained, and all of the

results will be valid in this case, but only in region Itjl> [_I • It remains to

examine the behavior of the system in the region of insensitivity_ i.e._ to

(2.89) Because dy --• _----z , equation (2.89) may
d_

analyze the solution of equation

be _itten in the form

a_ (2.90),_. -t- z = o;
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dy -
DT=z. (2.91)

The integral of equation (2.90) has the form

(2.92)

and; consequently;

 j0+%(i_ e-t). (2.93)

Expression (2.93) shows that in this case both _ and _ are exponential func-

tions of time.

To clarify the nature of the phase curves in the region of insensitivity; we

eliminate time T from equations (2.92) and (2.93); which gives us

_=_0+ %__. (2.9L)

Figure 2.39. Phase picture of system with region

of insensitivity.

From equation (2.94) we can see that in the region of insensitivity the

phase trajectories have straight i-nes, with a slope of 135 ° with respect to

the _ axis. Figure 2.39 shows the phase picture of the system's motion;

1 Iwhen the initial conditions are _ = 0 = O; Y_ : 0 :- YO . Outside this region

of insensitivity the phase trajectories are constructed in accordance with

equation (2.74). From this figure; it follows that there is a sharp drop in

the velocity in the region of insensitivity; when the region of insensitivity

is large; the system rapidly comes to a state of rest. The state of equilibrium

is characterized on the phase plane; not by the point with coordinate _ = O;

y = 0 as in the preceding case; but by a segment on the axis of the abscissas

The appearance of delay in this case increases the tendency of the system

to oscillate. Depending on the relationship between region of insensitivity

and delay AT; seifsustained oscillations may occur in the system or oscillations
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may become impossible. Figure 2.40a and b show the phase picture for both cases.

in figure 2.40aj the region of insensitivity is too small to prevent oscillations.

In figure 2.40b_ on the other hand_ the region of insensitivity is sufficient to

prevent oscillations. Thus_ in a nonlinear system of this type_ it is always

possible to suppress selfsustained oscillations by increasing the region of in-

sensitivity. Of course_ this is associated with the introduction of errors in

the reproduction of the output quantity. In the steady state form x = const_

the error may be equal to the width of the region on insensitivity (_ _).

4. Lowering the Amplitude and Increasing the Frequency of Selfsustained

Oscillations by Means of a Compensating Scheme. Rate feedback is widely used

as a compensating scheme in automatic control systems. To achieve rate feedback_

signal generating tachometers_ rate gyros and differentiating networks are usually

used. As an example let us consider the processes in a nonlinear system with an

ideal relay element and with rate feedback. The schematic of this system is shown

in figure 2.41. The rate feedback_ in this case_ is produced by the differentiation

of the output signal y and summation at the auxiliary winding of the relay with a

mismatch signal ¢.

. "" a b

Nc

V

Figure 2.40. Phase picture of the system, a--system

with selfsustained oscillations when region of insen-

sitivity is present; b--system with oscillations damped

out in region of insensitivity.

Let us write equations of the system

" d2y " dy =_lt,a---g

u =U sign [_-- 1.b
L • _tj

(2.95)
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Figure 2.41.

feedback.
Functional diagram of system with rate

As before_ we consider the case x = O_ and obtain

(2.96)

in this equation, the argument of the nonlinear function sign consists of

s_ of the deviation and its derivative with coefficient b. In dimensionless

form, equation (2.96) becomes

dx"-'_ "J- ....dx i- sign + _ O, '

(2.97)

b d_ --
where _ = _ is the relative value of the rate feedback coefficient; and ..... z.

T d=

The modulus of the last term in equation (2.97) is equal to i and changes

its sign when the sum _ + _ passes through zero. In connection with this we

can let sign (_ + _) = -_ and correspondingly change the condition for vary-

ing the sign of _. Then equation (2.97) will become identical to equations

(2.72). Thus expressions (2.74), (2.75) and (2.78) are valid for the present

system. It is only necessary to rememoer that if the sign of _ previously

changed_ when deviation y passed _hrough zero, it now changes when the sum

+ _ _ passes through zero. If switching previousl Z too_place on the straight

line _ = O, it now takes place on the straight line y + _ z = O. The switching

i
line _ = 0 has turned by an angle arc tan - counterclockwise. With this rotation

of the switching line_ selfsustained oscillations occur in the same manner as

in the system shown in figure 2.29. However, when the rate feedback is switched

on, it changes the nature of the system's motion to a state of rests decreases

its tendency to oscillate and lowers the period of motion.

The effect of switching in a compensating scheme is also quite pronounced

when the relay element has a delay. As we have shown_ delay caused the switch-

ing line to turn clockwise, resulting in oscillations. However_ the rotation

of the switching line counterclockwise will, in some sense_ compensate for the

delay and produce a decrease in amplitude and an increase in frequency of

oscillations, to a greater degree _nen _ is large. However, there are no values

of _ for which selfsustained oscillations can be eliminated_ if the system has

no regions of insensitivity.

Figure 2.42 shows the phase picture for establishment of selfsustained

osci!iations_ when the values of._ are relatively small. Switching would occur
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Figure 2.42. Phase picture of sys-

tem with delay and rate feedback.

0;

I.o

0 0.5 I.o_

Figure 2.43. Variation in parameter

_2 as function of relative delay.

on the switching line at point a_ but due to delay the switching process (vari-

ation in the sign of _) takes place at point b, which may be determined for a

known value of A_ by the method described below. The position of point b I with

respect to aI is determined in the same way. Finally, as already pointed out,

the phase trajectory will coincide with some cycle of selfsustained oscillations

_ose parameters will be a function of both AT and 4. The simplest expression

in terms of A_ and _ is the oscillation parameter _2 (the value of the velocity

for which the sum y + _y becomes equal to zero). If we know z2, we may use

equations analogous to (2.81)--(2.84) to obtain the other parameters of oscilla-

tions.

The relationship [2 = _2 (Am, {) is shown in figure 2.43. As we can see

from this figure, when the coefficient of rate feedback _ increases, there is

a substantial decrease in z2, and there is consequently a decrease in the ampli-

tude of selfsustained oscillations. Quantity _ affects not only the amplitude

and frequency of oscillations, but also the transient process in the relay sys-

tem. For small values of _ (fig. 2.42), the general transient process differs

little from the case _ = 0_ considered above. For small values of 4, the tran-

sient process retains an oscillatory nature. When _ is increased (when _ is of the

order of unity or greater), the nature of the transient process changes. As an

example, figure 2.44a shows the phase picture of the system when _ is relatively

large. Curves _ = _ (T) and _ = _ (_), corresponding to the phase picture_ are

shown in figure 2.44b. As we can see_ the system pulses towards the equilibrium

position. This form of motion is called the sliding state. Due to this, the

transient process may be substantially prolonged. For this reason, excessive

values of _ cannot be recommended. Coefficient _ must be selected so that on the

one hand the amplitude of oscillations is sufficiently small, and on the other

/96
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hand the transient process is not too prolonged. The optimum value of _ may be

selected, depending on the delay by means of the following equation I

optimram = 1 -- 1}12-e -_:
(2.98)

Figure 2.44. Phase picture (a) and transient proc-

esses (b) when values of { are large.

}_en { is selected in accordance with (2.98); we can guarantee a sufficiently

small oscillation amplitude and a minimum duration of the transient process. When

the region of insensitivity is small and when _ _ O, the oscillations are easily

damped, in this case; the damping of oscillations can be achieved with a sub-

stantially smaller region of insensitivity than in the case of _ = O.

in conclusion; we note that instead of differentiating the output quantity;
we could use some method to introduce the derivative of the mismatch. In this

case, the transient process during initial deviation and the selfsustained oscil-

lations in the system may be changed by selecting the parameters of the differen-

tiating device. From the standpoint of accuracy; in servosystems; the last vari-

ation is preferred to the introduction of the derivative of the output quantity.

5. Vibratory Linearization of Relay Systems

The Reaction of Relay Systems to Slowly Varying Inputs. The presence of

oscillations in a relay system; whose frequency spectrum is substantially higher

than the control spectrum x(t) and the spectrum of perturbations F(t); produces

the effect of vibratory linearization. This means that the reaction to inputs Fit)

and x(t), which are slowly varying functions compared with the oscillations in the

IA. A. Krasovskiy and G. S. Pospelov; The Principles of Automatic Control and

Engineering Cybernetics, Gosenergoizdat, 1962.
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relay system_ turns out to be close to the reaction linear systems. In the same

way, transient processes with limited initial deviations turn out to be close to

transient processes in linear systems. High frequency oscillations in a linear

system may be forced or of the selfsustaining type. Let us consider these methods

of vibratory linearization.

Vibratory Linearization by Means of Forced Oscillations. Let us assume that

the input to the relay element is a slowly varying function x(t) and a periodic

signal _ (t). We shall select the frequency of this signal so that it is suffi-

ciently high, but such that the relay element has time to operate every half-

period. Signal x(t) and the signal from the source of high frequency oscilla-

tions may be added by different methods. Let us see how linearization is achieved

when these signals are added at the windings of the polarized relay. A voltage

which is proportional to signal x(t) is fed to the winding with ampere-turns AWl,

while the voltage from the source of high frequency oscillations is fed to the

second winding with ampere-turns AWil.

Since the source of ac current is usually a saw-tooth oscillator, we as-

sume that the current we are using has a triangular form. In this case, when

the signal is x(t) = 03 the switching diagram, i.e., the output signal of the

relay element, has the form shown in figure 2.45. The diagram is constructed with

the assumption that the delay of the relay is equal to zero_ and the sign of sig-

nal u changes when the current in the second winding passes through zero (the

current in the first winding is equal to zero because signal x(t) is equal to

zero). The average value of the signal u in this case will be equal to zero. The

switching frequency of the relay's contacts must be such that the oscillations of

the output quantity y(t) due to it have a negligibly small amplitude. Therefore,

in the future we shall consider only the average value of this signal.

Now let us consider the case when signal x(t) is different from zero. The

value of the ampere-turns AW 1 in winding I of the polarized relay (fig. 2.46)

will be proportional to signal x(t). The sign of signal u will vary at the in-

stant of time when the sum of the ampere-turns of winding I and winding II will

pass through zero. The diagram showing the variation in signal u for this case

is shown in figure 2.46.

Figure 2.45. Switching diagram

for a zero mismatch.

Aw

Figure 2.46. Switching diagram

for a nonzero mismatch.

88



a

v_
I

b

Figure 2.47. Linearized characteristics of relay

systems, a--with sa_:-tooth signal, b--with sinus-

oidal signal.

From these diagrams we determine th_ average value of the voltage at the

output of the relay device.

Ua_ U_ (2.99 )

where K is the command coefficient equal to

K-_ TI--T2
Tz + T_

(2.100)

The value of coefficient K may be expressed in terms of the ampere-turns

of windings i and ii of the relay

K= (2.101)

where AWII m is the amplitude value of the ampere-turns of winding II.

Because AW 1 is proportional to signal x(t), which in an automatic con-

troi system may be the error signal or the mismatch signal e, we obtain from

(2.101)

K = k._
A _Vu,_ (2.102 )

The law (2.102) is valid only in the range e <CO, and

A IFI Im

% ----- " (2 .i03)k_

Expression (2.103) shows that the region of proportionality is determined

by the amplitude of the saw-tooth oscillations. Figure 2.47 shows the variation

/99
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in the average voltage Uaverag e as a function of mismatch ¢. If saw-tooth

waves are not acting, this relationship would have the form shown in figure

2.28. Thus, due to the action of saw-tooth oscillations, the nonlinear char-

acteristics become linear in a certain range. In this range the relay system

may be considered a linear system. The relay amplifier in the diagram in this

case is replaced by a linear amplifier with an amplification factor equal to

k_/AWIim.

Previously we assumed that delay At of the relay device is equal to zero.

If we take into account the delay; the position of the relay amplifier must be

occupied by a linear amplifier _th delay; whose transfer function has the

following form

• W(p)---- k. e__tp.
(2.1o4)

If selfsustained oscillations exist in the relay system; then for the case

of linearization they are damped by the applied external oscillations. The fre-

quency of external oscillations must be several times greater than the frequency

of se!fsustained oscillations; because this provides negligible amplitude of

oscillations in the output quantity of the system.

In some cases sinusoidal oscillations are used for linearization. In this

case; the. _elationship between K and mismatch ¢ is nonlinear and is given by
expression

K= _ arc sin--. (2.105)
n AIVII m

This relationship is shown graphically in figure 2.47b.

only in the range I¢ I<_0' where
AWu_ •

_0 === --

_¢"

This law is valid

However; for small values of mismatch 3 this relationship may be assumed to be

linear and we may consider that

2 k_s
I<= . (2.1og)

n A l,VlI m

Vibratory Linearization Due to Delayed Feedback Around the Relay Element.

Let us assume that the relay element system has the characteristic shown in

figure 2.48. This characteristic is typical of a two-position polarized relay.

/100

iSee footnote on p. 87.
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Figure 2.48.

with loop.

Relay characteristic Figure 2149. Functional diagram of

system with delayed feedback.

Free play in mechanical transmissions of a nonlinear system also produce loop

characteristics. Let us place a feedback loop around the relay element which

contains an inertial member with time constant T and amplification factor k I

(fig. 2.49). Selfsustained oscillations occur in the circuit consisting of the

relay element and the inertial element. Sometimes these are called relaxation

oscillation and the circuit itself is called a relaxation generator. The oscil-

lation frequency of the circuit is selected so that it is sufficiently high and

permits us to neglect its component in the output signal y(or error _). When the

problem is formulated in this manner, we must determine the transfer character-

istics of the relaxation circuit for the slowly varying error signal c.

We write the equation of thecircuit using the designation shown in figure

2.49

u = p

T ev +v=k_u.
dt

(2.107)

The presence of high frequency selfsustained oscillations in the circuit

makes it possible to write the system of equations (2.107) for average values of

the signals. We shall designate these values with asterisks

2_

W|

=It* _-. 2_ .

0

T dv.._____*_}_ v* = kdl*.
dt

(2.zo8)

where w a is the frequency of selfsustained oscillations.
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The average value of the output signal of the circuit u* = Y(¢) is a func-
tion only of input signal _, and for the case of a relay element (fig. 2.48) is
equal to the commandcoefficient K_ i.e.,

7(_)----
T,- ÷_ (2.i09 )
T, -_- T2

where TI is the positive pulse duration and T 2 is the negative pulse duration.

Both quantities TI, T2 and, consequently, the period of selfsustained oacil-

lations T1 + T2 = 2n/w a are functions of input signal ¢. The form of the oscilla-

tions in the circuit is shown in figure 2.50 for value v. When _ = 0, the circuit

contains symmetric selfsustained oscillations T 1 = T2. When _ _ 0, the self-

sustained oscillations become nonsymmetric. The sign of _ determines the relation-

ship between T1 and T2 and hence the sign of u* . In the intervals T1 and T2 the

laws for the variation of Val(t) and Va2(t) are described by the exponents' equa-

tions ± k I U(I - 2e-t/T). Therefore, for the interval 0 _ t _T I

v,, (l) --: (_ --a) e__/r + tqU (1 .-- e-"r). (2.110)

while for the interval 0 <t <T 2

v_2(0 ==(_+ 'J e-'/r -- lqU (1 - e-'/r). (2.111)

In equations(2.110) and (2.111), time is measured from the beginning of the

intervals.

The half-period T I terminates and switching occurs when _ = c - _al(t)

reaches a value -a. The half-p_riod T 2 terminates and switching occurs when

= e - Va2(t) is equal to + a. By using these relationships, T I and T2 may be

expressed in terms of ¢_ a and_ consequently, we can obtain relationship y* =

Y/e,a). The graphs of the functions y* = Y(e) for various values of a are shown

in figure 2.51. For a_0 when the relay element with characteristics shown in

figure 2.48 is transformed into a relay element with characteristics shown in

figure 2.28_ the frequency of selfsustained oscillations becomes infinite, and

Y(e) in the range -kl,U _ _klU transforms into a linear function with an ampli-

fication factor i y(_) I
k_l ' i.e., =k_l e. If [e ± a I <<klU, then, as follows from

figure 2.51, we may assume approximately that _(e) = _ also, when a _ O.
. kl ¢
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Figure 2.50. Curves showing oscillations in feedback

circuit of system functionally represented in figure

2.49. i and 2--limiting exponents.

? (e) a,

Figure 2.51. Lineaxized character-

istics of relay element with delayed

feedback.

l
" a

aza,

! b .

Figure 2.52. Relay characteristics

with region of insensitivity (a) and

with loop (b).

•" G

• . I t1%-._a=ao '

Iz_ /_ i -a-2a,

q-_// !

Figure 2.53. Linearized characteristics of relay
element (fig. 2.52_ with delayed feedback.
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A relaxation circuit may also be formed by producing a feedback with delay

over the three-position polarized relay with characteristics shown in figure

2.52 . The function Y(c) for this case may be determined analytically. The

graphs of the function Y(_) for various values of a are shown in figure 2.53.

It follows from these graphs that the function Y(¢) is close to a linear func-

tion in the range

(ao + a) _ _ < (k_U + ao-- a)

for positive values of ¢ and in the range --(ao+a) >_ (klU+ao--a), for negative

aZ _ G 2 a 2 -- 0 t ""

values_ where a°=_2 . a=_2 In the limiting case when a _ O, i.e., the

characteristics shown in figure 2.52b are transformed into characteristics given

by figure 2.52a_ we have

'i'(_) 00 + l..... ,. (2.112)
kL k_

In the range Isl< (a0qLa) the characteristics of figure 2.53 have a region of

insensitivity. If _ lies in this range_ there are no selfsustained oscillations

in the circuit. The graphs of functions Y(¢), shown in figures 2.51 and 2.53_ are

the statistical characteristics of relaxation circuits and are valid for different

constant values of ¢. We consider only the transmitting function of relaxation

contours_ correct for the dynamic region when _ = ¢(t)_ limited there only by the

limiting relay characteristics sho_ in figures 2.28 and 2.52a. In the limiting

cases when a _ Oj while the frequency of oscillation is w _ _3 the input signal
a

of the relay element also tends to zero. Consequently_ in the limiting case

v* = ¢, and we find from the last equation of system (2.108) that

/lO4

Zt'x"_- _ + dt ]"
(2.113)

Expression (2.113) shows that in the limiting case the transfer function of

a relaxation circuit consists of a transfer function pertaining to an ideal forc-

ing element of the first order

!
IV,IU.(P) = 71 (Tp + 1). (2.114)

We note that the same transfer function is characteristic of an amplifier

with an infinite amplification factor which has an inertial element in its

feedback loop (fig. 2.54). In the limiting case, a linear amplifier which has

Figure 2.54. Functional diagram of amplifier with

infinite amplification factor.
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undergone vibratory linearization indeed has an amplification factor which is in-

finite, because k = u*/_ and since _ O, k_ _. The forcing properties of a re-

lay amplifier with feedback (relaxation circuit) are accompanied by delay in the

transformation of input signal _. The delay is determined by the time it takes

the relay to operate and to release and also by the width of the loop a in its

characteristics. When signal _ is sinusoidal, the operation and release of the

relay produces a phase shift in the output signal u'with respect to input sig-

nal _, which is proportional to the frequency, and the presence of a loop in the

characteristics gives the same phase shift at any frequency. If the forcing

properties of a circuit are to be substantial_ it is necessary to select large

values for constant T. To avoid a very low frequency of oscillation, it is nec-

essary to have a relay amplifier with high dynamic properties, small width of

loop a and small values for the operating and release time.
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CHAPTER 3. CONTROL SIGNALS FOR HOMING GUIDANCE

Section 3.1. Forms of Energy Which Can Be Utilized. Active,

Semiactive and Passive Homing Devices

Devices which can be used to determine the position of a missile with

respect to its target are called homing devices.

It is necessary to have energy coupling between the missile and the tar-

get for proper operation of sensors in the homing heads. The coupling energy

may be electromagnetic (light waves, infrared rays and radio waves) and acoustic.

The target must have a higher energy than the surrounding medium, i.e., it must

present a contrast on the background medium. The use of sound waves for aerial

missiles moving in air has not become widespread because the missile itself is

a source of high level noise which interferes with the detection of sounds

emitted by the target. Acoustic contrast is used only in the heads of homing

torpedoes. Light contrast is also seldom used in homing missile systems. This

is true because a large number of targets do not exhibit sufficient contrast and

it is difficult to isolate them from the background. In principle, the missile

homing heads may use radiation in the much shorter wave part of the electromag-

netic spectrum--gamma rays.

Figure 3.1. Schematic diagram of active homing guidance.

Incident radiation front. Reflected radia-

tion front.

The most common form of energy used is that of infrared rays and radio

waves. There are three types of homing guidance heads, depending on the loca-

tion of the energy source:
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(i) active--the source of energy for illuminating the target is on the

missile, and part of the energy reflected by the target falls on the sensor in

the homing head (fig. 3.1);

(2) semiactive--the source of energy for illuminating the target is situ-

ated outside the missile. Part of the energy reflected by the target falls on

the sensitive element in the head (fig. 3.2);

(3) passive--the target serves as the source of energy: the energy radi-

ated by the target falls on the sensitive element in the head (fig. 3.3).

Figure 3.2. Schematic diagram of semiactive homing

guidance.

Table 3.1 shows the regions of the electromagnetic spectrum and the corre-

sponding wavelengths which can be used in various types of homing guidance heads.

f

7J
J"

Figure 3-3. Schematic representation of passive

homing guidance.

Section 3.2. Sensors Used in Infrared Homing Guidance Heads

Before considering the operating principles of infrared homing heads, it

is necessary to consider the properties of infrared radiation sources and the

propagation of these rays in the atmosphere. Any body whose temperature is

above absolute zero (T = - 273.15°C) is a source of infrared rays.

The wavelength of infrared rays depends on the temperature of the radiat-

ing body which establishes the region in the infrared spectrum, and the type

of sensor used in the homing guidance head. The higher the temperature of an

object; the smaller is the range of waves radiated by it. The quantity of radi-

ated energy corresponding to a definite wavelength for a given temperature of

the object is called the intensity of radiation. Figure 3.4 shows the variation

Am
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TABLE 3 .i. CLASSIFICATION OF ELECTROMAGNETIC SPECTRUM BY

REGIONS OF WAVELENGTHS.

Region of Spectrum Wavelength

Radio

Waves
I Long .........

Medium ........

Short .........

Ultrashort ......

•Microwave ......

Infrared [ Long wave ......

rays I Medium wave ......Short wave . . ....

Visible .............

rays

Ultraviolet. ...........

rays

X-rays ..............

Gamma rays ............

20 000-2000 m

2 000-200 m

200-10 m

i0-0.5 m

Shorter than 0.5 m

750-25_

25-2.5_

2.5-0.76b

0.76-0.4

 ooo-5o

5o-o.o 

40 X and shorter

-13
Remarks: i b = 10 -6 m; 1 _ = iO -I0 m, i X = i0 m.

in the intensity of longwave infrared radiation as a function of the body's

temperature. The infrared radiation produced by the jet of hot gases flow-

ing from a reaction or rocket engine lies in a very narrow band of the spec-

trum; whose average wavelength is determined by the characteristics of the

molecular resonance of the products of combustion. Thus, e.g., carbon dioxide

and water vapor, which are contained in exhaust gases, produce radiation with

wavelengths (2.5 - 3.2 b) and (4.2 - 4.5 _), respectively.

The direction of the maximum radiation energy of infrared rays coincides

approximately with the direction of motion of exhaust gases from the engine of

the target airplane. The radiated energy depends not only on the temperature

of the body_ but on the condition of its surface. The cleaner and lighter this

surface, the smaller is the percentage of infrared energy which can be radiated

by an object at a given temperature. Thus_ an airplane with a well-polished sur-

face will radiate only i0 percent of that energy which would be radiated at the

same temperature by an airplane painted black. To express the effectiveness of

radiation of an object, we use the concept of emission power. It is character-

ized by the radiation coefficient _ i.e._ the ratio of power actually radiated

by an object to the power which would be radiated if the object were an abso-

lutely black body. This ratio is always less than unity.

On the basis of the Stefan-Boltzmann law we may find the radiation energy

ET = _oT 4 watt/cm 2 (3.1)
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Figure 3.4. Curves showing effect of radiating object

temperature on intensity and wavelength of infrared

radiation.

where ET is the energy per unit area radiated by a body over the solid angle

2w: _ is the radiation constant equal to 5.6686-10 -12 watt/cm 2 deg4; T is the

temperature of the body in OK; and _ is the radiation coefficient.

Equation (3.1) is used to determine the energy which is radiated by an

object. Only part of the energy will reach the sensor. Energy will decrease

due to scattering and due to losses in the optical system. Scattering is in-

versely proportional to the square of the distance between the source of energy

and the sensor. Thus, the magnitude of the power which arrives from an object

at the homing guidance head 3 when the distance between them is 1600 m and the

temperature of the object is 900°C and the radiation coefficient is 6 = 0.i,

constitutes 35-10-12watt/l cm 2 of the sensing surface from each square centi-

meter of the object's surface.

o

o ._

.+_
O_._

o ._
rn

•< cu

co

0.8 ! 1,2 1.51,,72 29 J3._ ¢. 5 6 7 89/01//3 1_

Wavelength in

Figure 3.5. Curves illustrating regions of absorp-

tion of infrared energy by atmosphere. --Water

vapor. Carbon dioxide ....... Ozone.
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In addition to the scattering of infrared rays during their passage through

the atmosphere, there is a particularly pronounced absorption over some regions

of the spectrum. Infrared rays are absorbed by water vapor in the atmosphere and

by carbon dioxide. Thus, carbon dioxide is responsible for intense absorption
i

bands for wavelengths 2.05, 2.6, 4. 3 and particularly l2.8 - 17.3 _.

The most intense absorption of infrared rays is accomplished by water vapor,

which has intense absorption bands at various wavelengths. The strongest ab-

sorption by water vapor takes place at the following wavelengths (the figures

indicate the centers of the absorption bands): 0.94; 1.13; 1.38; 1.46; 1.87;

2.66; 3.15; 6.26; 11.7; 12.6; 13.5 and 14.3 _. Figure 3.5 shows curves which

illustrate water vapor absorption regions and absorption regions of carbon

dioxide. The relative amplitudes of the absorption bands eorrespondingto these

components of the atmosphere are represented by an arbitrary scale, because the

percentage of these components in the atmosphere may vary. The regions of the

spectrum where infrared energy is transmitted without distortion are called win-

dows.

As the altitude is increased, the width of windows increases due to lower

air density and lower water vapor density. At an altitude of approximately i0 km

and higher, the absorption of infrared radiation practically ceases, except in

narrow bands of the spectrum, one of which is in the region of wavelengths 2.8 _,

while the other is in the region of wavelengths 4.4 _, corresponding to the ab-

sorption bands of carbon dioxide andwater vapor, respectively.

Source of

infrared Optics

i: '

se

0 _

Figure 3.6. Schematic representation of infrared

energy sensor, se--sensing element.

As a result, the quantity of energy which arrives at the sensor (fig. 3.6)

may be computed by means of equation

E,, " E¢-_ Sk_4, (3.2)

where E is the entire energy which has arrived at the sensor in watts; L is the

distanc_ from the energy source to the sensor in cm; S is the area of the input

pupil which projects the infrared rays on the sensor, in cm2; kI is a coefficient

ii. A. Margolin and N. P. Rumyantsev, Principles of Infrared Engineering,

Gosenergoizdat, 1955.
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which characterizes losses in the atmosphere. The magnitude of the coefficient
depends on the state of the atmosphere, and k2 is a coefficient which character-

izes the losses in the optical system.

The sensors of infrared radiation may be divided into two groups--selective
and nonselective. Nonselective sensors have a uniform sensitivity in a suffi-
ciently wide region of the spectrum. They are based on the principle of trans-
forming the energy of infrared rays into heat. The surface of a nonselective
sensor must have an absorption coefficient which is constant over the given re-
gion of the spectrum. Usually the coating consists of platinum black 3 soot or
other substances with a high absorption coefficient for infrared rays. Bolometers
are used as nonselective sensors i_ homingguidance heads. The sensitive layer
absorbs the radiant flux_ is heated and causes a change in the resistance of the

-i0
bolometer. This mak@sit possible to detect a radiant flux of power as low as I0
watts.

The sensing element of the bolometer is fabricated from a thin layer of
various materials_ semiconductors and dielectrics with a high temperature coeffi-
cient of resistance. The layer of metal has a thickness of 0.i - I0 _. In prac-
tice_ two such sensors are used and are connected in the arms of a bridge with an
equal bias voltage (fig. 3.7). Oneof the sensing elements (se) is subjected to
infrared rays, while the other (ce) is screened to provide compensation for the
variation in the resistance due to changes in ambient temperature.

se

T

Figure 3.7. Schematic diagram showing arrangement

of sensors in infrared detector, ce--compensating
element.

Photoresistive cells are used as selective sensors of infrared radiation.

Their resistance changes under the action of infrared radiation. Semiconductive

materials are used to fabricate photoresistive Cells, including lead sulphide_

lead telluride_ indium antimonide and others.

Let us compare the characteristics of these two basic types of sensors

which use the infrared radiation of the target.

Sensitivity. An increase in sensitivity leads to an increase in the de-

tection range of a target. The concept of spectral sensitivity is widely

applied_ i.e. 3 the distribution of sensitivity over the regions of the infrared

spectrum.
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Figure 3.8. Curve showing spectral sensitivity of

infrared detectors. 1--cooled lead sulphide (-80°C);

2--uncooled lead sulphide; 3--cooled lead telluride

(-80°C); 4--cooled lead selenide (-183°C); 5--cooled

indium antimonide (-183°C), and 6--thermal(bolometric)
detectors.

Bolometers are equally sensitive to all wavelengths in the infrared spec-

trum; however, to obtain an equivalent signal level at the output, they require

at least i00 times more infrared radiation energy compared to photoresistive

cells fabricated from lead sulphide. In view of its low sensitivity, the ap-

plication of the bolometer would have ceased a long time ago, if the high sen-

sitivity of photoresistive cells were not limited by the relatively narrow

band in the infrared spectrum.

Figure }.8 compares the maximum threshold sensitivities of various de-

tectors. I If we examine the curves shown in this figure, we see that the sen-

sitivity of lead sulphide at a wavelength of } _ drops sharply at room tempera-

ture, at wavelength 4.0 - 4.5 _ the sensitivity of a lead sulphide cell is less

than the sensitivity of a bolometer. The spectral sensitivity of photoresistive

cells may be increased somewhat by lowering their temperature. By cooling a lead

sulphide element with dry ice to a temperature of approximately -80°C, _s spec-

tral response is widened by 0.5 _ and its sensitivity increases by more than 15

times. However, when sensitive elements are cooled, their response time de-

creases. Other materials such as lead telluride and lead antimonide have a high

sensitivity to radiation at the long wavelength end of the infrared spectrum com-

pared with lead sulphide, but are less sensitive to radiation in other regions

of the spectrum.

IM. A. Bramson and A. Ye. F_likeyev, Infrared Technology of Capitalist Nations,

"Soviet Radio", 1960.
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Lead telluride cooled to a temperature of 90°K (-183°C) is sensitive to
radiation with wavelengths greater than 7 _, while cooled lead antimonide is
sensitive to wavelengths of approximately 8 _. The maximumsensitivity of cooled
lead telluride reaches only 10-20 percent of the sensitivity of lead sulphide,
while the sensitivity of lead antimonide is equal only to half the sensitivity
of lead telluride.

Photoelectric Current. The photoelectric current depends not only on the
illumination, but also on the applied voltage. Figure 3.9 shows the volt-
ampere characteristics for dark current (iT) and for current during illumina-

tion (i). As we can see from this figure, when the applied voltage varies,
C

the photoelectric current at constant illumination also varies. The variation

in the photoelectric current during constant illumination is called noise. In

addition to the useful signal, each sensor is a source of various noise. In

bolometers the principal role is played by thermal noise which is produced by

molecular fluctuations in the sensitive layer. Another form of interference in

bo!ometers is the noise produced by the variation of the current which flows

through the sensitive layer of the detector. Compared with thermal noise, the

level of this noise is relatively small when the bias voltage is of normal

value.
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Figure 3-9. Volt-ampere character-

istics of bismuth sulphide photo-
resistive cell.
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Figure 3.10. Transient process

in selenium photoresistive cell.

To decrease the noise which originates when air penetrates the sensitive

layer during vibration, thermal detectors are placed in a vacuum. The magni-

tude of the sensor's noise is evaluated by the equivalent noise power which

corresponds to the infrared power (in watts) at the input, which produces an

output signal equal to the mean square value of the noise signal in the corre-

sponding band of frequencies. Thus, e.g.; the equivalent noise power of a

thermal bolometer in a band of i cycle is approximately equal to I0 -I0 watt,

while for a cooled lead sulphide cell it is equal to approximately i0 -II watts

when the band is i cycle. The sensor will produce a clear signal only if the

power (energy), which falls on the sensor from the target, is greater than the
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equivalent noise power. From these considerations we may evaluate the detection

range of a homing guidance thermal head by means of equation (3.2):

/ E'_klle:SLm_x = E te_
ne

where Enois e equivalent is the equivalent noise energy and k3 is the safety

factor k.}> 1.

Frequency and Time Characteristics. All sensors which respond to infrared

rays have a lag in their response: the photoelectric current which occurs when

they are illuminated or darkened does not change instantaneously3 but with some

delay in time. The delay time is the time necessary to achieve a photoelectric

current, which is 95 percent of the maximum value. The delay encountered when

the photoelectric current decreases is different from the delay encountered

when it increases: usually the rise time is less than the decay time.

Figure 3.10 shows the transient process in a circuit with a selenium pho-

toresistive cell. As we can see from the figure, the rise time and the decay

time of the photoelectric current is approximately 0.2 sec. For lead sulphide,

the delay time is approximately 3 x I0-4 sec.

In a photoresistive cell of the same chemical composition, the spread in

the delay time may be ± 50 percent of the average typical value Bolometers

with a metallic film of gold have a delay time of the or&er of 4 x 10-3 sec. I

•,e_/oo
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modulation frequency of radiant

flux in cps

Figure 3.11. Amplitude-frequency characteristics.

l--bolometer made of gold and cbvered with a thin

film; 2--thallium sulphide photoresistance; 3--

lead sulphide photocell.

1p. Smith_ F. Jo_es and P. Chessmer, The Detection and Measurement of Infrared

Radiation, I. L., 1959.

io4



When the sensors are illuminated with a modulated light flux, the amplitude

of the output signal is decreased as the modulation frequency f is increased.

Figure 3.11 shows the amplitude characteristics of certain infrared sensors.

Section 3.3. Coordinates of the Infrared Homing Guidance Head

Parabolic mirrors may be used in infrared detection systems, tracking sys-

tems or control systems to collect and focus the infrared radiation. As in the

case of visible light, the focused flux of infrared radiation is directly pro-

portional to the square of the diameter and inversely proportional to the square

of the focal distance of the mirror. The greater the power of infrared radiation

focused by the mirror, the smaller is the required area for the sensitive layer

of the detector, which in turn decreases its delay time.

For the best focusing of infrared radiation (in addition to that achieved

by the mirror), lenses are sometimes used in front of the sensor. These lenses

are made of materials which are transparent to infrared rays. To increase the

efficiency of a mirror in the infrared region of the spectrum, its surface is

covered with a thin layer of gold or aluminum.

The sensors_ the focusing system, the amplifiers and other elements which

comprise the homing guidance head, are placed in the nose of the missile. To pro-

tect the sensor and the optics from external mechanical disturbances, the nose

of the missile is covered with a cowling. The material of the cowling must

satisfy the following condition:

(i) it must be sufficiently rigid and durable;

(2) it must be highly transparent to that part of the infrared spectrum

which is used for the operation of the homing guidance head;

(3) it must have high thermal conductivity to carry the heat to the rim of

the cowling.

To increase the transparency, the cowling is coated like photographic

lenses_ which makes it possible to increase the transmitted infrared energy

by 20 - 50 percent.

The sensor and the optical system only permit determination of the exis-

tence of an infrared radiation source (target). However, in addition; it is

also necessary to determine the position of this source (target) with respect

to the missile. Figure 3.12 shows the relative positions ofthe target and the

missile.

The position of the target with respect to the missile may be determined

in a system of polar coordinates_ if we compute ¢ = arc sin R/L and b; or in a

system of Cartesian coordinates

cy = arc 8irl Rcosp..-1---, % = arcsln _s____,,___ (3.3)L
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optical axis
of head

Figure 3.12. Geometric relation between position

of missile and target.

The selection of the coordinate system is dictated by the method used in

guiding the missile. In determining the relative position, the radiation flux is

modulated in the homing heads. Figure 3.13 shoWs one of the circuits used in a

homing head. I Sensor i is situated at the focus of parabolic reflector 3. Mod-

ulating disk 2 rotates between the mirror and the sensor. The current produced

by the sensor is amplified by amplifier 5 and enters the missile control sys-

tem. For some types of modulating disks, (fig. 3.14a) it is necessary to pro-

vide a commutator for output signals 4 (fig. 3.13), which is placed on the disk

of the drive shaft and provides for four switches during one revolution.

-r-

4

.] "

Figure 3.13. Schematic diagram of homing head.

1--sensor; 2--modulating disk; 3--reflector;

4--commutator of output signals; 5--amplifier.

Figure 3.!4 shows modulation disks coated with various substances which do

not transmit infrared rays.

When the disks shown in figures 3.14a and b are used, the optical axis passes

through the center of the disk. When the optical axis deviates from the direc-

tion to the target, the image of the target is displaced along the radius of the

disk and during different intervals of time current pulses are read from the

sensor. In practice the application of such disks makes it possible to obtain

IF. Muller, Remote Control, I. L.,. 1957.
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Figure 3.14, Modulating disk of infrared homing head.

control signals of the type "yes - no." The magnitude of the current depends

on the radiation of thermal energy by the target_ and it increases as the

range to the target decreases. The basic disadvantage of such a system is that

it is highly susceptible to interference. All the irregularities in the back-

ground radiation which surrounds the target produce false signals difficult to

distinguish from the useful signals.

If disks are used (fig. 3.14c) with radial graduation lines which differ

in frequency and are covered with a material that does not transmit infrared

rays, the modulation frequency increases. The photocell is placed behind the

modulation disk. If the optical axis is not directed towards the target, then,

depending on which row of slots is subjected to the focused optical energy

flux from the target_ the signal at the output of the amplifier will shift in

frequency and will be transmitted to the missile control systems through a

corresponding filter, in this manner the displacement of the target in one

plane may be determined. By installing a second optical system and another

sensor, which is rotated by 90 ° with respect to the first (points i and 2 in

figure 3.14c show the projection of the optical axes), it becomes possible to

measure displacement in another plane. In this way we can obtain signals which

are proportional to deviations in two mutual perpendicular planes by installing

two diskswith a different number of slots (fig. 3.14d). In this way we obtain

four overlapping fields_ each of which determines two frequencies from the

four possible modulation frequencies. This mixture of frequencies from the out-

put of the photoelectric amplifier is transmitted to the filter stages. From

the frequencies which are filtered out it is possible to establish the direc-

tion of the optical axis of the device and of the direction of the line between

the missile and the target. When the disks shown in figures 3.14c and d are

used_ it is also possible to obtain the signals "yes - no." Proportional con-

trol signals may be obtained by using disks shown in figure 3.14e.

As the image of the target is displaced along the radius_ the modulation

time of the light flux by frequencies fl and f2 is varied. The ratio of the

times is proportional to Sy or ez. The circuit, which can be used to deter-

mine the signal which is proportional to the time ratio, is shown in figure

3.15. The photoelectric current of the sensor is amplified and is then trans-

mitted to the primary winding of transformer Tr. During period TI the voltage
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Figure 3.15. Schematic diagram of homing head.

varies with frequency fl_ while during period T2 it varies with frequency f2"

The secondary windings of the transformer with inductances _ and L2 and with

capacitors ci and c2 form resonant filters which are tuned_ respectively_ to

frequencies fl and f2" When the signal at frequency fl is applied_ the cur-

rent passes through the upper half of the circuitj and when the applied signal

has frequency f_, it passes through the lower part of the circuit. A rectifier

in each part of the circuit transmits the current for only half a period. By

means of capacitors c3 and c4_ the dc component of the current is isolated and

is fed to resistances r I and r2. The currents in resistances rI and r2 are

directed towards each other_ and the voltage between points AB is equal to the

difference in voltages across the resistances rI and r2.

! : !.

i,,(;/"_ A , A A A

_A,9 "-

Figure 3.16. Variations in voltage which clarify

operation of scheme shown in figure 3.15.
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The curves in figure 3.16 show _he variation in voltage at different _Doints

of the circuit. Due to the filtering of the voltage in the two-element filter,

dc voltages are fed to tubes LI and L2 (fig. 3.15). The increments of voltage on

the grids of tubes LI and L2 have the same signs. The modulus of the difference

in the increments of the voltages depends on the value of the difference TI - T2.

IT I _ T_The value of voltage Uou t is proportional to the ratio TI 7 _ and the sign

of Uou t is determined by the sign of the difference TI - T2. Figure 3.17 shows

the variation in the output voltage of the homing head as a function of the mis-

match signal from the angle _ between the optical axis of the head and the direc-

tion from the missile to the target.

Some shapes of modulating disks (figs. 3.14c, d, e) make it possible to ob-

tain control signals in a Cartesian system of coordinates, while the disks rep-

resented in figures 3.14f and g make it possible to obtain control signals in

the polar system of coordinates. Two disks with cutouts (fig. 3.14f) rotate in

the same direction, but with different velocities; one of them has a cutout in

the form of a sector_ while the other has a cutout in the form of a spiral slit.

The cutout in the form of a sector determines angle _ while the spiral slit

determines angle _. The amplified photoelectric current is distributed by a

commutator, which rotates with the disks, to corresponding control channels.

On the disk shown in figure 3.14g, a layer which does not transmit infrared

rays is applied along an Archimedean spiral. Therefore the photocell generates

current pulses whose duration is proportional to the departure of the target image

from the center of the slit. The image of the slit is obtained in the form of a

luminous point focused in the plane of the disk. An ac current generator is syn-

chronized with the rotating disk. The phase of the photoelectric current pulses,

with respect to the phase of the sinusoidal voltage produced by the generator_

determines angles c and _ by means of a computer.

Figure 3.17. Characteristics of homing head.

These remarks are valid when the image of the target represents a point.

As the missile approaches the target, its image increases and the sensor is sub-

jected to infrared rays which are _odulated simultaneously by two frequencies,

i.e., the clear establishment of the angle between the optical axis and the di-

rection to the target is disrupted--"the head goes blind."
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One of the principal component parts of an infrared homing head is the elec-

tronic amplifier. As the range decreases, the amount of infrared energy which

falls on the sensor increases, and consequently the photoelectric current also in-

creases. Therefore the gain of the amplifier must be varied--it must be decreased

proportionately to the square of the range. For this purpose an automatic gain

control (agc) is used. Nevertheless, at a certain distance from target the photo_

electric current will be so large that the operating point of the amplifier will

pass over to the region of saturation, and the head will generate a maximum sig-

nal regardless of the displacement of the missile. This will be the second rea-

son for the "blinding" of the head.

It is desirable to reduce the internal noise of the head to a minimum.

The noise sources capable of suppressing aweak signal from the detector are

tubes, resistances and conductors. When the signal frequencies are relatively

low, due to the slow rotation of the coordinate disks_ it is necessary to have

a precise control and thorough filtering of the supply voltage which feeds the

heaters and other elements of the tubes. To decrease the effect of induction

pickup, the first stage of the amplifier is placed as close as possible to the

infrared radiation detector.

Section 3.4. Comparison of the Passive, Active and Semiactive

Radar Homing Heads

A passive radar homing head does not have a device for illuminating the

target; it is_ therefore_ simple and its operation is unknown to the enemy. A

passive radar homing head is used if the target is a radar or some other object

having a continuously operating radio transmitter in the range of wavelengths

suitable for homing guidance.

Semiactive heads have the advantage that the powerful energy source is situ-

ated at the tracking point and does not perish with the missile. Therefore, the

equipment aboard the missile_ equipped with a semiactive head_ is simpler_ cheaper

and lighter than in an active head. Since the power and directionality of a radar

transmitter aboard a missile cannot be made as large as at the tracking point, the

range of a missile equipped with an active tracking system is smaller than that of

the one with a semiactive system.

Active homing heads make homing guidance independent of the operation of the

tracking point_ which is expedient for the case of any other mobile tracking

point. In addition_ when an active radar head is in operation, only the missile

is decamouflaged and not the tracking point. The active radar head may be more

expedient in those caseswhen the process of homing guidance does not start at

launching_ but only close to the target_ i.e._ at a large distance from the track-

ing point. From these considerations it follows that the type of radar homing

head is selected on the basis of technical considerations and is limited by the

technical mission of the missile.
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Section 3.5. Obtaining the Error Signal in Radar Heads

To measure the angle between the axis of the homing head and the direction
to the target, any of the knownmethods of direction finding may be used: the
method of equisignal zone_ direction finding according to the maximum,direc-
tion finding according to the minimum, etc. However, the method of the equi-
signal zone is more widely used in the homing guidance heads because it satisfies,
to a large extent, the basic requirements presented to these heads.

The method of equisignal zones is based on the comparison of signals re-
ceived by several or by one antenna_ but for different positions of its radia-
tion pattern. The equisignal zone maybe spatial or it may be plane. A combi-
nation of two plane equisignal zones to measure, respectively, the deviations

and _ (fig. 3.12) form a spatial equisignal zone. A spatial equisignal
y z

zone may be formed by rotating the radiation pattern.

sm

._--- • ez

Figure 3.18. Principle of generating an equisignal zone (ez).

This principle is used most frequently in homing guidance heads. I The an-

tenna and reflector of an active head are shown in figure 3.18, which also shows

two positions of the radiation pattern. The antenna rotates with a constant

angular velocity _ and the IA axis of the radiation pattern is inclined at an

angle £ with respect to the axis of rotation of the antenna; which is also the

axis of the equisignal zone. Thus, for any position of the antenna, the same

quantity of energy is radiated in the direction of the equisignal zone (ez) by

the active head and received by the active, semiactive and passive head. If the

equisignal zone is directed towards the target and the angle _ between the equi-

signal zone and the direction to the target is small, the amplitude of the re-

ceived signal, when the antenna rotates, varies according to the law

(0 = E1-t- cos ( q- (3.

where m = k ¢; k is a constant which depends on the parameters of the antenna;

and b is the angle formed by the plane containing the target with the plane yx

(fig.3.12).

IL. S. Gutkin, The Principles of Radio Control of

Radio," 1959.
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Figure 3.19. Section of the radiation pattern and

formation of control signal.

Let us show the validity of expression (3.4). Figure 3.19a shows the sec-

tion of the radiation pattern by the plane of the drawing. The solid line shows

the section of the radiation pattern at the instant of time t, while the broken

line shows it after a period of time T/2 = w/w, i.e., when the radiation pattern

is rotated by 180 °. The side lobes of the radiation pattern are also shown. Fig-

ure 3.19b shows the variation in the intensity of the signal received by the an-

tenna as a function of time. It is obvious that when angle _ is larger, the dif-

ference _2 -_Ul' equal to twice the amplitude of the periodic component of the
signal, zs a_so greater. When _ <A we may assume, for practical purposes, that

the amplitude of this periodic component is proportional to mismatch _. The re-

ceiver of the head has an automatic gain control which makes the output voltage

independent of the quantity Uom. The amplitude of the input signal for a passive

and semiactive head depends on the square of the range_ while for an active head

the amplitude of the input signal varies as the fourth power of the range. After

amplification and detection of the signal received by the antenna, we obtain the

following voltage at the output of the receiver

•_l. = k,-:cos (9_t--t-iO. (3.5)

where _ is a constant.

The voltage u is called the error signal. Figure 3.20 shows the variation

in the amplitude of the error signal as a function of the mismatch. When _< _-A
2

(where _ is the angle of the radiation pattern), we may assume that the character-

istics are practically linear. For ¢_ _ -A after the maximum value is achieved,
2

u begins to decrease. Thus, the magnitude of the linear zone of error signal
C

amplitude variation depends on the width _ of the antenna radiation pattern and

on the A-angle of inclination of the pattern with respect to the antenna axis

of rotation. As we know, when the width of the radiation pattern decreases, the

range, freedom from interference .and the gain of a radar system increase.
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However, when the radiation pattern becomesnarrow and the angle A becomes
narrow, it is difficult to capture the target. Therefore, the magnitude of the
sighting angle and the equivalent width of the linear region for the variation
in the amplitude of the output voltage as a function of mismatch angle e in most
cases constitutes ± 5 to i0 °.

U

U_ma

l

!

Figure 3.20. Variation in error signal amplitude

as function of mismatch.

Section 3.6. Formation of the Control Signal

As indicated by equation (3.5), the error signal contains two parameters e

and _ which characterize the relative position of the missile and the target. To

control plane-winged missiles the signals must be proportional to _ and _, while

for missiles with cruciform wings the signals must be proportional to -e and _ .
Y z

Let us see how control signals are obtained for each of the aerodynamic missile
forms.

ucl
U

ref

_ef _ •

Figure 3.21. Phase of the error signal.

Missiles with Plane Wings. In controlling missiles with plane wings it

is necessary to determine the amplitude and phase of the error signal. In order

to obtain a control signal proportional to the phase, the error signal u is

compared with a reference voltage (fig. 3.21). The reference voltage Ure f is

produced by a sine wave generator whose rotation is synchronized with the rota-

tion of the radiation pattern. By feeding both of these voltages to a phase-

sensitive bridge; it is possible to determine phase b.

•lit 
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Missiles with Cruciform Wings. Figure 3.22 shows the schematic diagram for

obtaining control signals for axially-symmetric missiles. The signal from antenna

D

Figure 3.22. Schematic diagram showing generation

of missile control signals, rg--reference generator.

A passes through receiver P and is fed to a synchronous detector SD. To obtain

control signals in this case the signals of the reference generators are used.

In addition to the error signal, the input of the synchronous detectors is also

subjected to the reference voltages

Uref i = Uref cos _t, 1

7

u = U sin _t.
ref 2 ref /

(3.6)

In some cases the sine-wave generator of reference voltages and the elec-

tronic synchronous detectors are replaced by mechanical commutators which are

synchronized with the rotation of the pattern.

_Taen the error signals are compared with reference voltages, the syn-

chronous detectors develop voltages Uy and u , which are proportional to ¢ andz y

Cz" The synchronous detectors may have different circuits. Figure 3.23 shows

the schematic diagrams of synchronous detectors (for one control channel) when

a sine-wave generator of reference voltages is used. The diagram shown in fig-

ure 3.23a is the simplest. The reference voltage is applied to the grids of tubes

L I and L2, together with the error signal. The error signal is out of phase,

while the reference voltage is in phase.

As a result the variable voltages on the grids of the tubes will be

Ul = Uref i + uc I

u2 = Uref i " u_. I

(3.7)
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Figure 3.23. Diagram of sy-nchronous detector.

In our analysis we shall assume tubes LI and L2 are identical. When the

load resistance is small (r << r. ), the plate currents of the tube may be written
1

in the following form

fi2 = Ia + art2 -t- btt_,

(3.8)

where a and b are coefficients in the expansion showing the variation in the

plate current of the tube as a function of grid voltage.

The terms in the expansion which are greater than second order are not con-

sidered. If we neglect the effect of capacity c on the transmission of dc and

the low frequency component of the output signal, we may write

u -_ ilr -- i2; = r (ix -- i2) = rAi. (3.9)
output i

By using equations (3-7) and (3.8) we can express the difference in the cur-

rents Ai in terms of the signal error voltage and the reference voltages in the

following manner

+ 4bU_Ure f (3 i0)Ai = 2au i" "

By taking into account expressions (3.5) and (3.6) and carrying out some

transformations_ we obtain

_Ai ==-2alq_ cos (_l -I- _) + 4buj',_ cos ,_ -I-

._- 4b_l_ + cos (2_/-t- _).

(3.11)
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However,

_== g COS ].t,
(3.12)

Therefore,

bi 2alq_ cos (-°-L-t- _) -i- 2bu0k_y q- 2bzZokl_ cos (2.q/q- _). (3.13)

The quantity _ depends on the frequency of rotation of the radiation pattern_

i,e._

where f is the frequency of rotation of the antenna in cps.
a

Usually f _ 20-100 cps. The functions _ and ¢ vary slowly with time. The
a y

spectrum of frequencies for these signals lies in the range 0 to 5 cps. There-

fore, to isolate a signal which is proportional to _ it is sufficient to place
Y

a filter with a bandpass of 0 to 5 cps at the output of the phase detector, it

is obvious that if the frequency of rotation of the antenna f is increased, it
a

is possible to decrease the time constant of the filter, i.e., to decrease the

delay in the channel which generates the control signal. The increase in the

frequency of rotation of the antenna is limited by the mechanical strength of

the entire system. When disturbances are present the error signal may develop

low frequency components and we are faced with the problem of filtering them.

In this case a push-pull synchronous detector is used. The possible scheme of

such a detector is shown in figure 3.23b.

To decrease the mutual effect of the reference voltages and error signal

voltages, these are fed to different electrodes of each tube--to the grid and to

the anode. When the circuit is completely symmetrical, the resulting current in

the first and the second detector may be expressed in the form

Ai=-_l_tt.ttref i 1 (3.15 )

Ai_:h!t_t_ ref i J

where k is a coefficient which depends on the parameters of the circuit and the

tubes.

It can be shown that the voltage at the output of the filter, which is

placed after the synchronous detector, is equal to

Uoutput i _ rAi = r2buok_sy._I

Uoutput 2 _ rat"_ t2bu_h_,. _
(3.16)
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T_e control signals may be obtained in this manner. In considering the

operation of the circuits we did not take into account disturbances or the ad-

ditional circuits used to decrease their effect.

Section 3.7. Interferences in Radar Heads

Interferences which affect the operation of radar heads may be produced in

the target control channel, i.e., in the channel which receives signals reflected

by the target. Reflections from the target are rather weak_ while the illumina-

tion of the target is carried out with a powerful radio beam which makes it easier

for the enemy to recognize the technical features of the target control system

and to generate interference. In addition to the interference produced by the

enemy, there are several other forms of interference, of which the following are

most important:

(i) interference produced by the internal noise of the radar receiver, i.e.,

by the fluctuation of electrons in tubes and in the circuits of the receiver, and

(2) interference produced by the pulsation of the signal reflected by the

target.

Figure 3.24. Generation of interference.

The internal noise of the receiver is present regardless of the target

range, and when the range is very large the received signal becomes comparable

to the noise signal. Thus, if we know the magnitude of the noise we may estab-

lish the limiting range of the head.

Interferences produced by the pulsation of the signal reflected by the

target added to the interference from the internal noise decrease the range of

the head. These interferences also decrease the strike accuracy of the missile 3

because they produce its oscillations not due to the realization of tracking.

Let us briefly consider the reasons for the pulsation of the signal reflected

by the target. At centimeter and decimeter _aves, the wavelength is small com-

pared with the linear dimensions of the target i and reflection pattern from the

target in any plane is of a complex multilobe nature.

In theory the reflection from the target is assumed to be a reflection from

a point_ but actually the electromagnetic oscillations are reflected by the tar-

get under different angles _ (fig. 3.24). The pulsation frequency of the re-

flected signal depends on wavelength X, on the dimensions of target i and also

on the rate of variation of anglej_ 0
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2t 1_:° [l = T -_- si,:co • (3.17)

Therefore, error signal pulsations may occur even when the variation in the angle

of incidence _0 is uniform. If we note that in most cases the angle _0 does not

vary uniformly and has random components, the true spectrum of the pulsations may

contain an appreciable number of components with a wide frequency range--from units

to hundreds of cycles.

The variations in the angle _ may be due to the following basic causes:

(I) the rotation of the target with respect to the equisignal zone; in par-

ticular, this motion may be of two forms in airplane targets: turning during

evasion maneuvers ahd oscillations with respect to the center of gravity; and

(2) the forward motion of the target.

It is easy to evaluate the signal error pulsation frequency when the airplane

is undergoing evasion maneuvers. When the target is turning with an angular ve-

locity of 10-20 °/sec, we obtain the following values when i = 15-30 meters,

k_lO cmand {0 = 90o

l,,,_- soooI 1o so
I0 lS-_,3 _ cps,

/max-- 6000/1025-_.031_'200"cps"

by
When the target is moying forward, the angular rate of change will be given

d( o V
_--_-- sin_a. (3.18)dt L

Substituting this expression into equation (3.17) we obtain

2v _ (3.19)
J:=--7 T sin2 _"

For the same value of i and k when V _ 300 meters/sec, we obtain

III]3X

60 - 200

L K._t cp S.

Consequently, when the target is moving forward the pulsation frequency de-

pends on the range, and for large ranges (L_ 10-15 km) lies within the limits

f _ 4-20 cps.
_&x
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It is clear that pulsation frequencies close to the frequencies of rotation

of the radiation pattern will have a particularly pronounced effect on the head

and introduce large errors. If we bear this in mind, we may conclude that at

long ranges the principal interference is produced by pulsations due to the rota-

tion of the target, while at short ranges it is produced by the forward motion of

the target.

Figure 3.25 shows a typical curve for the pulsation of the radar receiver

signal produced by reflection from a long range flying target which does not

undergo sharp maneuvers. Figure 3.26 shows the frequency spectrum of this
curve.

To decrease the pulsation of the signal, it is possible to increase the wave-

length. However, this method is notused because it is necessary to keep the size
of the antenna small.

I0 ..... • ,

i¸

-LO_ ....

Figure 3.25. Variation in error

signal as function of time.

_,o2gFT--
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Figure 3.26. Frequency spectrum of

error signal.

An increase in the frequency of rotation of the radiation pattern also

leads to a decrease in the effect of signal pulsation_ however, when the an-

tenna is rotated mechanically, this frequency is limited by the mechanical

strength of the system. Thus, in a series of cases a substantial lowering of

pulsation may be quite difficult because the performance of the radar head will
decrease.

Filters before and after the detector are also used to decrease the pulsa-

tion of the signal. The parameters of the filter are selected in such a way

that the noise frequencies are not passed by it. When filters are used, a lag
is introduced into the radar head. I

Section 3.8. Generation of Control Signals for Various Methods

of Homing Guidance

In preceding sections we have shown how to obtain a signal proportional to

the angle between the optical axis of the head and the line joining the missile

IL. S. Gutkin, The Theory of Optimum Reception of Radio Waves in the Presence of

Fluctuating Noise. Gosenergoizdat, 1961.
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and the target (see sections 3-3 and 3.6). To accomplish various methods of

homing guidance_ which will be analyzed in Chapter 13_ it is necessary to have

a control signal proportional to the angle between the line of sight from the

missile to the target and the longitudinal axis of the missile_ or the air speed

vector_ or to have a signal proportional to the angular velocity of the line

joining the missile and the target.

It is clear that the simplest signal is one proportional to the angle be-

tween the line joining the missile and the target and the longitudinal axis of

the missile, in this case the optical axis of the head must coincide with the

longitudinal axis of the missile, i.e._ the homing head is rigidly attached to

the frame of the missile.

Let us consider in more detail the generation of the control signal pro-

portional to the angle _ between the line joining the missile and the target
Y

and the velocity vector in the vertical plane. The geometric relations for this

problem are shown in figure 3.27. A signal which is proportional to the angle

may be obtained in several ways:
Y

(i) aboard the missile the optical axis of the head always coincides with

the direction of the missile's longitudinal axis; angle ¢ is the sum of two

angles(fig. 2.7) Y

+C_.
y = Shead

The sum of the signals which are proportional to angles _head and _ is fed to

the control systems;

(2) by using a servosystem which rotates the head with respect to the

missile frame and by using a sensor which gives the value of the angle of attack

c_.

If the servosystem rotates the optical axis of the head by the angle of

attack with respect to the longitudinal axis of the missile_ the control signal

taken from the head will be proportional to the angle between the line joining

the missile and the target and the velocity vector. Before considering the

operating principle of a servosystem, we pause briefly to examine the sensors

used to measure the angle of attack.

A signal proportional to the angle of attack may be obtained by means of a

sensor which detects the angle of attack and the angle of slip. To measure the

angles of attack and slip accurately, the rod must be secured in the nose of the

missile_ which is impossible in most cases due to the presence of the homing

head. Therefore_ the sensor which detects the angle of attack and the angle of

slip is usually used in preliminary testing of the missiles without the control

system. The value of the angle of attack may be obtained indirectly by using an
i

accelerometeror a damping gyroscope.

iThese devices are considered in,ore detail in section 5.5.
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target __

reference line

Figure 3.27. Relative position of missile and

target in pursuit method.

In the vertical plane the missile is constantly subjected to acceleration

due to gravity and acceleration due to aerodynamic forces. Let us establish

the relationship between the acceleration normal to the flight trajectory and

the angle of attack of the missile. The normal acceleration is given by ex-

pression

]v=V do Y--OsinO (3.20)
" dt m '

where Y is the lift force of the missile; m, G are the mass and weight of the

missile,respectively, and 0 is the slope of the trajectory, as shown in figure

3.27.

The variation in lift force Y over a definite range of the angle of attack

is linear. Consequently, expression (3.20) may be represented in the form

./y = k. -- g sin O, (3.21)

where g is the acceleration due to gravity; and k = k (V, p, m) is the coeffi-

cient of proportionality for a given missile which depends on the flight ve-

locity.

From equation (3.21) we obtain an expression which relates the angle of

attack of the missile and the normal acceleration

¢=_y+dsinO (3.22)
k

In the horizontal plane the relation between the slip angle and acceleration

rill be even simpler, since the force of gravity does not affect the motion of

the missile in this plane

o ,z (3.23)
k_.

Jz = V d0s is the acceleration normal to the trajectory in the horizontalwhere
dt
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plane; 6s is the slope of the trajectory in the horizontal plane 3and kI = kI

(V_ p, m) is a coefficient of proportionality.

It follows from expressions (3.22) and (3.23) that when the flight velocity,
air density_ mass of the missile and the slope of the trajectory are constant or
vary slowly_ the accelerometer may be graduated in terms of the angle of attack
and the slip angle, if the above parameters vary within wide limits 3 it is
always possible to measure them in principle and to use a special computer to
take into account their effect on the relationship between the normal accelera-
tion in the vertical and horizontal plane and between the angles of attack and
slip.

Let us consider the problem of using a gyroscope with two degrees of freedom
for measuring the angle between the velocity vector and the longitudinal axis of
the missile. Weshall limit ourselves to the determination of the relation be-
tween the deviation of such a gyroscope and the slip angle. A gyroscope with two
degrees of freedom gives a signal proportional to the angular velocity of the
longitudinal axis of the missile in the horizontal plane. In this case, the
axis of the gyroscope pattern is directed along the z axis 3 while the axis of the
frame is directed along the longitudinal axis of the missile. This angular ve-
locity may be determined from expression

d'5 _ c;i_, J'z I- d_ k I d_
dt dt @ -- "v 7i V-C- -t- --dt '

(5.24)

where 8s is the slope of the trajectory in the horizontal plane, and _ is the

slope oZ the missile's axis in the same plane.

kl i
If we let - 3 we obtain

V T

T + d'--L. (5.25)
dl dl

As we can see from expression (3.25), the slip angle _ lags the angular velocity

d,/dt of the longitudinal axis of the missile. Therefore_ the signal which is

taken from the damping gyroscope, and which has passed through an inertial ele-

ment (filter) with a time constant T, will correspond to the value of the slip

angle _. On the basis of equation (3.24) the time constant must vary with flight

velocity 3 air density and mass of the missile. But in many cases the variation

in the time constant is insignificant, and in practice it may be assumed to be
constant.

The servosystem for rotating the optical axis of the head must be de-

signed in line with the diagram shown in figure 3.283 regardless of whether the

sensor is for the angle of attack or the slip angle. The comparison element i

is used to obtain a signal proportional to the angle between the direction of

the longitudinal axis of the missile and the optical axis of the head _-_ (fig.
3.30). A signal proportional to slip angle $ is fed to the second comparison ele-

ment 2 (fig. 3.28). The difference between these signals is fed to the head t'_rn
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Figure 3.28. Functional diagram of servosystem for
rotating head. i and 2--comparison elements; 3--
head actuator.

actuator and when it operates_ the head turns in the direction of the velocity
vector. The signal from the head is proportional to angle _ and is fed to the

Y

missile control system. The rotation of the head must be sufficiently rapid_ if
the optical axis is to follow the velocity vector accurately. This requirement
is fully met by gyroscopic systems which stabilize the head with compensation.
In practice a system of this type maybe considered to be free of inertia.

Figure 3.29 shows a simplified diagram of a system for stabilizing the
head. Its principle of operation consists of the following. The homing head
is secured to the internal frame of a gyroscope with three degrees of freedom.
Compensatingdevices produce momentswith respect to the axes of the internal
and external frames. This causes the gyroscope to precess3 and the optical axis
turns in the desired direction. The rate of precession is proportional to the
applied momentwhich_ in turn, is proportional to the control signal.

_ optical axis of the head

__omp

Figure 3.29. Schematic representation of head system.

On this basis we may write (motion in a plane)

M =k_, (5.26)
comp

where _ is the control signal; k is a coefficient of proportionality, and M
comp

is the compensating moment.

At the same time

(3.27)
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where b is the position of the optical axis.

Let us write the variation in the rate of precession as a function of the
compensating moment

d,_ = I_M (3.28)
dl C omp.

By transforming equations (3.26), (3.27), (3.28), we find

where

T d:--lt -_ }L=: Os,
dt

kk_

(3.29)

From analysis of equation (3.29) it follows that upon the termination of

the transient process the optical axis will be directed along the velocity vector,

if 8 = const, or that it will track with sufficient accuracy in this direction

whenSthe variations in the angle 8 are small• The tracking accuracy increases
S

as the time constant T decreases, which corresponds to an increase in the ampli-

fication factor (gain). The derivation of the equations did not take into ac-

count the lag in the generation of the compensating moment and of the control

signal, or the nonlinear variation in the rate of precession as a function of

the compensating moment. As we can see from equation (3.27), it is necessary to

measure the angle between the longitudinal axis of the missile and the optical

axis of the head, if the system is to operate properly. To do this, we may use

a potentiometer rigidly attached to the frame of the missile. The brush of the

potentiometer is fixed to the corresponding frame (fig. 3.29). The voltage u

taken from the potentiometer will be proportional to the angle between the lon-

gitudinal axis of the missile and the optical axis of the head.

From a similar system for the stabilization of the head we may obtain a

signal which is proportional to the angular velocity of rotation of the line

joining the missile and the target. In this case, the homing head tracks the

target, i.e.; the optical axis of the head is always directed towards the tar-

get. To achieve this; it is necessary that during the deviation of the optical

axis from the direction to the target the compensating moments be proportional

to this deviation. When the compensating moment acts; the homing head points

towards the target.

in line with what we have said; we formulate an equation of motion for the

stabilization system. The signal from the head is proportional to the angle

between the line joining the missile and the target and the optical axis of the

head (fig. 3.30), i.e.,

_ea_?- P- (3.30)

The compensating moment is proportional to the signal from the homing guid-

ance head_ i.e._
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= . (3.3l)Mcomp head

The angular velocity of the optical axis is proportional to the compensat-

ing moment

d'L

dt = 1_'IMcomp • (3 •32 )

By eliminating the variables from equations (3.30) - (3.32), we find

r_ -_- -I-p = % (3.33)

where

T, =_A_L (seo).
kkl

If angle _ is constant, then after the transient process is over _ = _, i.e.,

the optical axis of the head is directed along the line joining the missile and

the target, and tracking is accomplished. When angle _ is varied slowly, it is

obvious that angle _ also varies with approximately the same velocity, i.e.,

d_/dt_d_/dt. This identity is also valid when the missile is far from the tar-

get when d2_/dt 2 is small. As the missile approaches the target, the angular

acceleration d2_/dt 2 may increase radically, and then the equality d_/dt_ d_/dt

is no longer satisfied. If the angular velocities d_/dt and d_/dt are close to

each other, then it follows from equation (3.32) that

a,e k,M (3.34)
• dt _ comp.

Finally, by using equation (3.31 ) we obtain

kik_ - "-_-d_ .
nea_ dt

(3.35)

target

_ _/opti_ axis

reference line

Figure 3.30. Relative position of missile and of tar-

get in method of Pa.rallel approach.
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Expression (3.35) showsthat the signal from the homing head is proportic_nal
to the angular velocity of the line joining the missile and the target. Tmere-
fore, the signal from the homing head after amplification by a factor of klk is

fed to the missile control channel. Since the coefficients k and kI also deter-

mine the time constant TI of the tracking system, they are selected on the basis

of stability and performance. It is necessary to point out that when the homing
head is tracking_ the requirements for the angle of vision are radically reduced
and the range is_ therefore, extended.

Above, we have considered the simplest schemefor rotating and stabilizing
homing heads. It is clear that any gyro stabilization system may be used. In
selecting a system; the basic requirements are reliable operation, accuracy and
cost. The cost of a head which is gyro-stabilized is several times higher than
the cost of a head rigidly attached to the frame of the missile. Weshould add
that an introduction of a stabilizing system, as an introduction of any additional
components, decreases the reliability, i.e., increases the probability of failure
of the entire system. For this reason, tracking heads as a rule are used only to
measure the angular rate of rotation of the line joining the missile and the tar-
get.

Am
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CHAPTER 4. CONTROL SIGNALS IN EXTERNAL GUIDANCE

Section 4.1. Radio Beam Guidance of Missiles

A radio beam is a region of space which has the shape of a body of revolu-

tion _thin which electromagnetic energy from the transmitter of a radar station

is propagated. Since the radio beam is formed by the rotation of the radiation

pattern of the radar transmitter, its axis is the equisignal zone of the radar.

The guidance of a missile along a beam produces control signals aboard the

missile directly, without auxiliary communication channels. The radar station,

which produces the radio beam pointing to the target, is situated at the missile

control site. The missile contains a receiver which picks up the signals from

the radar transmitter at the control site. This receiver determines the magni-

tude and direction of missile deviation from the equisignal zone in a system of

coordinates fixes with respect to this zone. The signal from the output of the

receiver is fed to the missileborne control system. When the control surfaces

are actuated, a force is produced which keeps the missile on the beam.

The equisignal zone which is produced by the rotation of the radiation

pattern, makes it possible to obtain control signals on the missile in any two

mutually perpendicular planes, whose line of intersection coincides with the

direction of the equisignal zone. If the position of the equisignal zone is

not too close to the vertical, the missile receives "up-down" and "right-left"

control signals (fig. 4.1). When the direction of the beam approaches the ver-

tical, the signals "up-down" are designated as "forward-backward." This princi-

ple is used to guide antiaircraft missiles, to guide aerial combat missiles and

short range airplane-missiles, which are dropped from the carrier-airplane. If

it is necessary to control the missile with respect to a plane (usually with

respect to the firing plane), the equisignal zone is produced not by rotation,

but by the displacement of the radiation pattern in one plane. In this case

the missile will only receive signals of the type "right-left." This method

is used to guide tactical and strategic airplane-missiles and long range rockets.

Different versions of missile guidance are shown in figure 4.2.

In the general case_ when the control point and the target are in motion

along arbitrary trajectories, the radio beam which contains the missile may be

displaced at very high velocity. Therefore, the trajectory acquires a substan-

tial curvature so that the missile is on the beam at all times. If the missile

is to follow this trajectory, it must have a substantial control force, which

can only be achieved by increasing the size of the wings and the dimensions of

the missile. Increase in the size is in turn associated with increase in drag_

and consequently affects the power of the engine and the mass of the missile.

By making the tracking equipment more complicated, it is possible to guide the

missile along a trajectory with !Ow curvature.
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Figure 4.1. Control signals which act on missile

control system.

For example, let us install two radars producing two independent radar

beams at the control point. We let one radar track the target, which gives us

the range and direction to the target, as well as the velocity of rotation of

the radio beam axis. The second beam must be directed to the point of inter-

ception where the missile and the target meet, if they move uniformly along a

a

cp

plane .

Figure 4.2. Missile guidance by means of radio

beam (a) and by means of radio track (b).

straight line. The missile must fly along the axis of the second beam until it

hits the target. A deflection angle forms between both beams_ and its instan-

taneous value depends on the velocity of the target and the velocity of the

missile. Information on the velocity of the missile and of the target is ob-

tained by processing the data obtained from the radars tracking the target and

the missile. On the basis of these data, the deflection angle is continuously

calculated by means of a computer at the control point and is processed by the

servosystem controlling the second beam. If the motion of the target is recti-

linear and uniform_ the trajectory of the missile in the two-beam guidance sys-

temwill be a straight line. If the target undergoes evasive maneuvers, the

trajectory is somewhat distorted_ but its curvature will be less than in the case

when only one beam is used for control. The schematic diagram of the control

system which can guide a missile _o a predicted point is shown in figure 4.3.
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Figure 4. 3 . Block diagram of two-beam system which

guides missile to predicted point. 1--target track-

ing station; 2--missile tracking station; 3--computer;

4--line for transmitting commands.

The disadvantage of a double beam control system compared with a single

beam system is the substantial increase in the complexity of the control equip-

ment. A two-beam system requires two radars and a complicated computer. We

should also point out that when a missile is guided from a mobile control point

(e.g., from an airplane), by selecting a corresponding law of motion for the

control point we can provide for a low turning velocity of the radio beam and

consequently for small curvature in the trajectory of the missile. The range

of a tracking system using a radio beam is determined by the range of the

radar at the control point.

Since the launching site for the missile and the radar site for control

are situated at different points_ it is necessary to bring the missile into

the radio beam. To achieve this in a simple manner, it is frequently nec-

essary that the cross section of the beam be considerable at relatively short

distances from the radar antenna. This condition can also be satisfied by

widening the radiation pattern of the radar antenna. It is clear that this can

only be achieved by decreasing the range or increasing the power of the radar.

However, the cross section area of the radio beam increases proportionately to

the square of the distance from the radar. Near the target, the missile is

reliably retained inside the beam whose radiation pattern is of a smaller width

than that required to bring the missile reliably into the beam. A decrease in

the sighting angle increases the range of the radar and the accuracy and free-

dom from interference of the system. Therefore, in a series of cases, a dis-

continuous or uniform variation in the sighting angle of the radar at the con-

trol point is introduced as the missile flies to its target. Initially, the

sighting angle is set for a maximum value, and as the missile flies to its

target, this angle is decreased.

The radar at the control point tracks the target automatically. This

principle has already been described in the preceding chapter when we dis-

cussed the tracking heads used in homing guidance. Therefore, we shall con-

sider only the generation of the control signal aboard the missile which flies

along a radio beam. The tail part of the missile contains an antenna and a

receiver. If the missile is on the radio beam (fig. 4.4a), the magnitude of

the signal received by the receiver on the missile will be constant because the
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Figure 4.4. Generation of control signal by an
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radiation power of the radar is constant in the direction of the equisignal zone.

If the missile deviates from the axis of the radio beam (e.g., towards point A

in figure 4.4b), the signal received by the antenna of the missile will oscillate

with a frequency of rotation of the radar radiation pattern. The maximum value

of the signal corresponds to position I of the radiation pattern, while the

minimum value corresponds to position 2, because in the first case the signal is

proportional to segment OB, while in the second case it is proportional to seg-

ment OA. The amplitude of the field intensity will be proportional to angle ¢

between the direction of the radio beam axis and line OC I.

From figure 4.4b we can obtain

h (4.1)
tg_ -----L'

where h is the deviation of the missile from the axis of the radio beam in the

plane yz which is perpendicular to this axis, and L is the distance of the mis-

sile from the control point.

The form of the signal at the output of the receiver in the missile is

sho_ in figure 4.4c. The phase of the ac component of the signal is deter-

mined by angle b between radius-vector h, showing the deviation of the missile

from the axis of the radio beam and the axis y (or z) in a plane perpendicular

to this axis (fig. 4.4b). Thus, after the de component is separated, the sig-

nal has the form

Ureceiver = k_ cos (_t+ b), (4.2)

where k is a constant which takes into account the parameters of the signal

transmission channel, and _ is the angular frequency of rotation of the radia-

tion pattern.
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As the missile moves away from the control point_ the field intensity drops

off as the square of the distance, and for this reason the receiver has automatic

gain control making the output voltage independent of the range.

Equations(4.2) and (3.5) are identical. Consequently, the form of the

voltage at the output of the receiver in the missile guided by the radio beam

is analogous to the form of voltage at the output of the receiver in the homing

guidance radar head.

To control missiles with cruciform wings we require signals proportional to

the components of deviation h on the vertical y and the lateral z surfaces (fig.

4.4b). To obtain signals of this type it is necessary to compare the signal re-

ceived by the missile with the reference voltage in the synchronous detector

(the diagrams of synchronous detectors have been considered in section 3.6).

The reference voltage developed aboard the missile must correspond in frequency

and phase to the rotation of the radiation pattern of the radar at the control

point producing the equisignal zone. Therefore, reference signals are sent to

the missile and are used to synchronize the generator of reference voltages

aboard the missile with the rotation of the radiation pattern of the radar. As

a result the output of the synchronous detector contains error signals which are

proportional, respectively, to ¢ and ¢ (section 3.6). However, to control the
Y z

missile, it is necessary to have signals proportional to y and z. From figure
4.4b we obtain

g = L lg _y, ( 4.3 )

z _ L tg E_.

/

Since the deviations from the axis of the radio beam are small during

missile control, we have

(4.4)

z _ L_z.

As we can see from equation (4.4), when the deviation from the axis of the

radio beam h is constant, angle ¢ decreases with range. Therefore, the signal

from the output of the synchronous detector must be varied proportionately to

the range in order to provide for control by linear rather than angular deviation.

_en the velocity of the missile is constant, the change in the range is almost

a linear function of time, and the signal is controlled by means of a potenti-

ometer with a clock mechanism (fig. 4.5). As the distance between the missile

and the control point changes, an increasing portion of the voltage supplied to

the potentiometer is picked up from it. The moving wiper of the potentiometer is

displaced by a clock mechanism. If the velocity of the missile is not constant,

the potentiometer is shaped accordingly.

We note that when a radio beam is used for homing we cannot permit the ro-

tation of the missile with respect to its longitudinal axis (if the missile does
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Figure 4.5. Schemefor taking
into account distance between
missile and target: l--phase
detector, 2--potentiometer.

Figure 4.6. Arrangement of trans-
mitting dipole and receiving dipole
whenmissile is controlled with
radio beam.

not contain a special transducer for control signals). If the missile rotates_
the normal operation of the control channels will be disrupted. For example,
if the missile turns by 90° with respect to its longitudinal axis, the control
channels "up-down" and "left-right" will change their roles and the operation
of the control system will becomeimpossible.

The signal which is received by the missile mayalso becomedistorted due
to the rotation of the radiation polarization plane produced by the radar at
the control point. In the simple case the transmitting and receiving antennas
consist of dipoles. The mutual position of the transmitting dipole ab and the
receiving dipole cd is shownin figure 4.6. Weassumethat the receiving dipole
is situated in a plane perpendicular to the axis of the equisignal zone (axis of
the beam). At each instant of time the electric field intensity vector E is
parallel to the transmitting dipole ab and rotates with it at an angular velocity
D. The polarization plane of the radiated energy also rotates in this fashion.

When the polarization plane coincides with the receiving dipole cd, the ampli-

tude of the signal received by the antenna will be a maximum. However, if the

dipole cd is perpendicular to the polarization plane, the amplitude is equal to

zero. Thus the amplitude of the signal voltage at the antenna of the receiver

is given by the following equation

Um(t)=heh E Icos _tl, (4.5)

where E is the field intensity produced by the transmitting antenna along the

axis of the beam_ and heh is the effected height of the receiving antenna.

If the missile is on the axis of the radio beam (fig. 4.6a), the rotation

of the radiation pattern does not affect the field intensity E which in this

case may be represented by En. If we expand the function (4.5) by means of
Fourier series; we obtain th_ following expression

)]--_ k 1.3 -- 1.3.5 + ....
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As we can see from equation (4.6), the amplitude of the voltage at the an-

tenna of the receiver contains a dc component and even harmonics at the fre-

quency of rotation of the radar radiation pattern. Therefore, if there is a

sufficient number of narrow bandpass filters in the amplifier of the receiver,

the parasitic modulation does not produce a signal at the output of the re-

ceiver if the missile is on the axis of the radio beam.

If the missile deviates from the axis of the radio beam (fig. 4.6b), the

rotation of the radiation pattern changes the value (modulus) of the field in-

tensity E at the reception point

E -- Eo[1 +/v. cos (9.t + p.)]. (4. ,7)

Due to the modulation of the field intensity expressed by equation (4.7),

we obtain a useful modulation of the signal with which we can determine the

n_gnitude and direction of the angular deviation ¢ (or the corresponding value

of h). However, when parasitic modulation is present, the resulting amplitude

modulation of this voltage is determined from equations (4.6) and (4.7) and has

the form

urn(t) = h 2 [I-I--_2 cosT--_l-- _cosd'_l-l-...]Xeh_. L a "
is (4.8)

X [1 _ le_cos(9lq-l*)].

After removing the bracketg, we obtain

(i_.9)

2 1q____9_cos 2-°-1 -k la ka cos (39l.. q- :_)-- --15 cos 4ol -_- ....

The de component and the higher harmonics may be filtered out; and two com-

ponents will appear at the output of the receiver: the useful component ke cos

(_t + b) and the parasitic component 1/3 k¢ cos (_t - b). The parasitic com-

ponent distorts both the amplitude and the phase of the control signal.

The receiver in the missile may use an antenna with circular polarization.

Let us consider how circular polarization is achieved by the application of two

mutually perpendicular dipoles cd and c'd', whose axes are directed as shown

in figure 4.7. _aen the dipoles are thus situated, the voltage picked up from

c

A

0 d'

Figure 4.7. Distribution of receiving antenna dipoles.
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them is displaced 90 ° in phase. The amplitude of the total voltage will not de-

pend on the rotation of the receiving antenna's polarization plane_ and the

parasitic modulation due to this rotation will not take place. The received

signal will be modulated only when the missile deviates from the beam axis; its

amplitude is given by equation (4.2). Since the antenna is rigidly attached to

the missile_ when the missile moves with respect to the beam axis_ the pla_e

of the dipoles becomes nonperpendicuiar to the axis of the radio beam. When the

plane of the dipoles is rotated_ parasitic modulation again appears. The angle

of rotation of the dipole plane usually does not exceed 30°-40 °, and the dis-

tortion of the error signal caused by parasitic modulation turns out to be sub-

stantially less than in the case when we use an antenna consisting of one dipole.

The_efore_ the antennas of the missile receiver must have circular polarization

when the missile is guided by the beam.

We can now compare the method of beam guidance with the method of homing

guidance. The basic advantages of beam guidance are:

--long rang%and

--relative simplicity.

plicated.)

(The equipment aboard the missile is less com-

We shall clarify our statement by considering figure 4.8. Since the trans-

mitters illuminating the target are situated at the control point in both cases,

in principle they may be identical. Thus the difference in the range is due to

the fact that in radio beam guidance the signal reflected by the target is re-

ceived by the control point, while in homing guidance it is received by the

missile. The receiver at the control point may be made considerably more sen-

sitive (by increasing the size of the antenna) and more efficient than the re-

ceiver in the missile. This situation remains true for a passive homing head

when the target serves as a source of ultrashort radio waves. It is clear that

in this case too the range of the beam guidance system can be much greater than

the range of the homing guidance system. Finally, for active homing guidance

the range of the head is small, because it is impossible to install a sufficiently

powerful radar on the missile.

ot

missile

a

r. t

missile b

Figure 4.8. Schematic representation of radio

beam guidance (a) and homing guidance (b).

_ne second advantage of a missile guided by a radio beam is obvious, since

in this case the receiver on board the missile is less efficient and has less

gain than the receiver in the homing head. This is true because the latter
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receives weak reflections from the target, while the receiver in a missile guided
by the radio beamreceives a powerful signal from the control point. The princi-
pal disadvantages of a beamguidance system comparedwith the radar homing guid-
ance systems are as follows:

--lower accuracy at long ranges between the control point and the missile
and

--continuous participation of the control point in guidance of the missile.

As the range is increased, the presence of the angular error in the direc-
tion of the radio beamleads to an increase in the linear deviation of this axis
from the center of the target. Another disadvantage becomesapparent when air-to-
air missiles are tracked. The necessity of tracking the target by meansof radar
installed on the airplane limits the maneuversof the airplane. During active
homing guidance the control point does not participate in the tracking. In semi-
active homing guidance the control point must only illuminate the target, which no
longer limits the maneuvers of the airplane containing the receiver.

To utilize the Positive properties of both methods, a combined system is
sometimes used. In this system beamguidance is conducted over the initial sec-
tion of the trajectory, and homing guidance is used when the target is approached
by the missile.

Section 4.2. CommandGuidance System

In the preceding section we considered beamguidance where the control sig-
nals were developed directly by the equipment aboard the missile_ although a
control point was present. Nowlet us consider methods of generating control
signals in external guidance_ whenthe control signals or the "commands"are de-
veloped at the control point and sent to the missile by meansof a special com-
munications channel.

target tracking

channel_ .___

control channel '

, target tracking

channel

communications " _

channel I " " _/1___

_/_is sile

control channel

Figure 4.9. System for controlling

relative position of missile with

respect to target by equipment in-

stalled at control point.

Figure 4.10. Control system for

position of missile with respect to

target by equipment aboard missile.

Two principal methods of controlling the missile with respect to the tar-

get may be used in developing command guidance systems:
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--control by meansof equipment installed at the control point (fig. 4.9),
and

--control by meansof equipment installed in the missile (fig. 4.10).

In systems of the first type an operator is usually used to track the posi-
tion of the missile and the target and to develop control commands. As an ex-
ample of the first system we consider the guidance of an aerial bombby means
of an optical bombsight (fig. 4.11). The operator uses the bombsight to ob-
serve the target and the missile continuously. The magnitude and direction of
the deviation of the missile from the target is represented in the form of a
segmentwhich connects their images. The control commandsare generated by the
operator by turning the control lever and are transmitted to the missile. The
operator who controls the missile tries to superpose the image of the target and
of the missile. This method is called the method of "three points" because
three points--the control point (operator), the missile and the target--in the
ideal case are on one straight line at all times. Obviously this method of guid-
ance cannot be considered automatic because the control loop uses an operator.

... command device

amplifi_display target

'_ .._. externally

unlt I'_ guided missile
/

transmitter ----. antenna /

" __tr _ _ _/.. •. ad ecto.j ._ /

Figure 4.11. System of guiding missile H -293 by

optical sight, s

As an example of a system in which the control commands are formed auto-

matically we can consider the system for the control of antiaircraft missiles

(fig. 4.12). The coordinates of the target and of the missile are determined

at the command point. From these data a computer develops a command which is

transmitted to the missile over the radio channel.

The method of tracking the missile is somewhat different from the method

of tracking the target, because the missile has special equipment facilitating

this tracking. The systems for controlling the position of the missile may be

passive, semiactive or active, depending on the location of the energy source.

Passive systems use the radiation of the missile (e.g., the radiation of

the missile's engine) or the energy of a naturzl source (Sun) reflected by the
missile.
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1--radar beam tracking

missile; 2--missile track-

ing radar; 3--computer; 4--

target tracking radar; 5--

radar beam tracking target;
6--control command.

Figure 4.12. Functional diagram of system for guiding

antiaircraft missiles.

A semiactive system utilizes the signal reflected by the missile.

Active systems utilize the energy of a radiator installed on the missile.

In the visual control, the radiators are tracers installed in the tail of the

missile. In radio control, the radiator is the transmitter installed on the

missile and tracked from the control point. This disadvantage of the active

system is that the missile is not camouflaged.

An example of this system in which the position of the missile with re-

spect to the target is controlled by equipment contained in the missile is a

control system which uses a television head or a radar set. The functional

diagram of this system is shown in figure 4.13 . The missile contains a tele-

vision transmitter and the lens of the television camera obtains the image of
the target. This image is transmitted over the communication channel to the

control point, where it is reproduced on a television screen. The operator

who observes the screen generates the control signals by manipulating control

levers. These signals are transmitted back to the missile over the radio

channel.

The presence of additional channels for transmitting information concern-

ing the target and control signals substantially complicates the control sys-

tem as a whole and decreases the resistance of the system to interference.

Thus this guidance system appears to be unsuccessful. However, the presence of

a human operator in this system gives it new characteristics not available in

fully automatic systems. The human operator utilizes his excellent visual

perception as well as his ability to adapt himself to the behavior of the mis-

sile and may provide effective control over the system when automatic systems

do not work. Conditions of this type arise, e.g., when the target exhibits

very weak contrast on the background, when the image of the target disappears

for a while and when there are many targets and it is necessary to select the

most important one. Therefore, to utilize the valuable properties of a human

operator in a missile control system_ it is necessary to have a natural image

of the target. Such an image can be obtained only by means of television

equipment, because radar screens and direction finding stations represent the

target in the form of a dot or of a spot of varying brightness.
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Figure 4.13.

1--screen; 2--operator;

3--control point; 4--

control lever; 5--radio

transmitter; 6--control

channel; 7--receiver;

8--automatic pilot; 9--

control surface; lO--tar-

get; il--TK; 12--TV trans-

mitter; 13--missile; 14--

communications channel;

15--TV receiver.

Missile guidance system using television head.

The disadvantages of using a human operator in a missile control system in-

volve the necessity of expending a considerable amount of time and expense to

train him, and also the fact that the performance of a human operator depends on

his subjective characteristics.

The command guidance systems_ regardless of whether they are completely

automatic or contain a human operator, always have a communication channel to

transmit control signals to the missile. For the sake of brevity_ we shall

call this channel the control channel. The schematic diagram of a control

channel is shown in figure 4.14. The control commands which are developed by
the command unit are coded and transmitted over the communication link to the

missile. On the missile the received signals are decoded and transmitted to the

control system on the missile.

The coding of the control signals increases:

--freedom from interference in the control channel, and

--the capacity of the link.

coding qommunication link

I + _ 'f .... " " <,,
iI---i _ r-:l', _ ir+_ r_ IT-=-I .-.',control
,1_ __ ,_14r+-_ _-?-.+++vl'l+"ode#"l ,,,_urfaee

- coin_nan-d" -- _-_Cns-I_c.ter . " . /;.=t_ating, ".;.
generator"

Figure 4.14. Schematic diagram of missile control

channel.

To transmit the control commands, in principle it is possible to use a

wire link or a radio link as well as infrared radiation and light radiation.

The basic advantage of wire communication is itshigh resistance to interference.
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However, when wires are used it is difficult to achieve reliability when the mis-
sile movesat high speeds, because the wires break. The resistance to interfer-
ence of a radio link is muchless than of a wire link, but the radius of action
is substantially greater. Infrared radiation and invisible light radiation do
not provide a sufficient range and, more important, they do not always provide
reliable operation in every environment. Therefore, to date they have not been
used for the guidance of missiles.

Let us consider in more detail, by meansof examples, the technical reali-
zation of wire and radio communication links.

i. Wire CommunicationLinks. The communication link consists of a steel
wire of small diameter, which is unwoundfrom a spool installed on the missile
or at the control point or at the missile and the control point simultaneously.
In the latter version the unwinding rate of the wire from each spool decreases,
which reduces the probability of breakage.

It is rational to use a wire link for missiles which are guided from a
stationary control point to mobile surface targets, because whena missile is
guided from a mobile point (e.g., from an airplane) the probability of wire
breakage increases. The range of a wire communication link does not exceed /153
several kilometers. Figure 4.15 shows the schematic diagram of an external

guidance system with a wire communication link. The command-coding unit I con-

sists of control lever i and two rollers 2 and 3, which are driven by a con-

stant speed electric motor D. Roller 2 is fabricated from current conducting

material and is divided by a dielectric material into two parts, fed with volt-

ages from the opposite terminals of battery B by means of brushes br I and br 2.

Brush br3 is connected to the control lever and is displaced from its middle

position along the genera trix of the roller, when the control lever is displaced

from its average position (e.g., to the right or to the left). When brush br 3

is in the middle position, its period of contact with both halves of roller 2

during each of its revolutions is the same, and is equal to half the period of

each revolution. Since the dielectric which separates roller 2 into two parts

is situated at an angle with respect to its axis_ when brush br 3 is displaced

from its average position, its period of contact with each half of the roller

becomes different. The generation of a command is produced by another roller

3 in a different plane. Roller 3 is also divided into two parts, one of which

is made of a conducting material, while the other is made from a dielectric. A

voltage from the middle point of supply battery B is fed to the current conduct-

ing part through brush br 5. Brush br 4 is connected to the control lever and is dis-

placed from the middle position along the generatrix of the roller if the con-

trol level is moved forward or backward from the vertical. The plane separating

the conducting and insulating part of roller 3 passes at an angle with respect

to its axis. When brush br 4 is displaced, the period of time it spends on the

conductive part of the roller and on the insulated part of the roller varies.

Brush br k is connected with the middle point on battery B through a resistance

r1. TheTcontrol signals picked up by brushes br 3 and br 4 are fed to the wire

transmission link II.
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Figure 4.15. Schematic diagram of the H -293 missile
8

guidance system utilizing wires ; (_ = br).

The command decoding unit Iil in the missile consists of polarized relays R
i

and R 2 and a bridge with rectifiers DI and D2. Relay R 2 is a three-position

relay, and its contact k2 is in the middle position when the wire is dead. The

deflection of the contact into one of the extreme positions depends on the direc-

tion of the current in the winding. Thus_ relay R 2 reacts to the polarity of

the signal. Relay R I is a two-position relay and its contact kI is in the lower

position, if the relay winding is dead or if the magnitude of the current is be-

low the value necessary to close the relay. The presence of a bridge rectifier

scheme makes it possible to obtain a dc current in the winding of relay R1 which
does not depend on the polarity of the current in the communication link. Con-

sequently relay R1 reacts to the amplitude of a signal.

a h

I

b _"

I
i= ='

Figure 4.16. Current diagrams in wire communication link.

Let us determine the form of the signals which enter the communication line.

Let us designate by TI and T2 the ?eriods of time which brush br3 spends on the

halves of roller 2 and designate by T3 and T4 the period of time which brush br 4
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spends on the halves of roller 3. In this case the following expression is
valid

TI + T2 = T3 + T4 = T, (4.1o)

where T is the period of rotation of rollers 2 and 3.

Each of the intervals of time T1, T2, T3 and T4 may vary from zero to T.

During the interval of time TI brush br 3 is connected to the negative terminal,

while during the interval of time T2 it is connected to the positive terminal of

battery B. Brush br4, during the interval of time T3_ is connected to the middle

point of battery B directly, and during the interval of time T 4 it is connected

through resistance r I.

Figure 4.16 shows the currents in the communication link (the position of

brushes br3 and br 4 is arbitrary). Let us explain this figure. Initially we

shall assume that roller 3 is fixed (fig. 4.15). Then the current in the line

will have the form shown in figure 4.16a. The polarity of the current changes

in accordance with the position of brush br 3 on the roller generatrix. If we

neglect the delay in the operation of relay R2, it will also close and open its

contacts as shown schematically in figure 4.16a. During each period of rotation

of roller 3 (figs. 4.15 and 4.16), an additional resistance rI will be switched

into the signal current circuit for a period of time T4 and will decrease this

current. During the interval of timeT 3 there will be no variations in the sig-

nal current. Thus the signal current assumes the form shown in figure 4.16b.

Since relay R I reacts only to current amplitude (regardless of its polarity)_

this relay will close during intervals T3 and will be released during intervals

T4 •

Let us introduce the concept of the command coefficient to designate the

average value of the reaction produced by relay RI and R 2 on the subsequent

members of the equipment aboard the missile. It is obvious that the command

coefficient in this sense is characterized by the equations

K,= T_-- T, (4.11)
Ta + T4 '
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K2 = T_ -- T_ (4.12)
Tx-t- T_

The graph for command coefficients _ and K2 as a function of the angular

displacement of the control lever from its vertical position is shown in figure

4.17.

In the diagram of the external guidance system shown in figure 4.15_ relays

R I and R2 of the decoder react on the electromagnetic spoilers which control the

rotation of the missile in two planes. If the time required for the electro-

magnets to operate is neglected_ their deviations in one plane will be determined

by TI and T2 while, in the other plane, they will be determined by T3 and T 4.

Consequently, the command coefficients _ and K2 will characterize the average

value of the control forces applied to the missile in the firing plane (up,

down), and in a plane perpendicular to it (right, left).

rig_t
//_ll left

Figure 4.17. Graph of command coefficients _ and K2

as function of angular deviation of control lever from

its vertical position.

2. Radio Communication Link. Radio communication may be carried out at

any wavelength. The factor to be considered is that when the wavelength de-

creases, the antenna size becomes small.

As an example of a radio transmission link for commands we shall describe

briefly a scheme whose principle of operation is analogous to that of the wire

communication link previously described. The schematicdiagram of the equip-

ment at the control point is shown in figure 4.18. The control commands are

formed in a command device which contains two rollersdriven by a motor, a lever

for displacing the brushes along the generatrixes of the rollers, a modulator

which contains an audiogenerator of frequencies fl' f2' f3 and f4 and a trans-

mitter with an antenna. The audio-frequency voltages of the modulator are fed

through the brushes brl, br2, br 3 and br 4 to the half-rollers_ and at each in-

stant of time two of these voltages act on the transmitter modulating the carrier

frequency. Aboard the missile there is a receiver with an antenna, a decoder and

an amplifier.
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= brush; M = motor.

Figure 4.18. Schematic representation of equipment

at control point used to guide missile H2-293.

The decoder consists of a system of resonant circuits which are used to

select the voltages of the modulating frequencies fl and f2 in one channel and

f3 and f4 in the other channel. After rectification and amplification, the out-

put of both channels of the decoder produce a succession of polar pulses shown

in figure 4.19. The intervals of time TI, T2, T 3 and T 4 which characterize these

successions are determined by the magnitude and direction of deviation from the

vertical position of the control lever in two perpendicular planes. The average

value of the voltage at the output of each channel is determined by the command

coefficients which are known from equations (4.11) and (4.12). Later these volt-

ages may be fed to the subsequent elements of the control system, either directly

or after they are smoothed out by an appropriate filter.

u_ ist channel

Figure 4.19. Diagram of voltages at output of decoder,

which control missile.

Section 4.3. Radar Stations for Detecting Aerial Targets

Radar stations which detect aerial targets as a rule are stations with cir-

cular scanning. Chapter 14 considers one of the methods for realizing the ex-

ternal guidance, in which information on the coordinates of the target and of the
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missile is obtained by means of radar stations with circular scanning. In this
section we consider the different principles for measuring the coordinates of
the target by meansof radar stations. Obviously the sameprinciples may be
used to detect the coordinates of the missile. I

Stations for detecting the position of the target in space usually utilize
a spherical system of coordinates. In this system the coordinates are the in-
clined range L, azimuth _ and the elevation _ (fig. 4.20). The region of space
which is examined by the radar station is characterized by the detection range
of the target, the bearing sector and the elevation sector. The aperture angle
of the radiation pattern of the radar station is substantially less than the
scanning sector in the corresponding plane. Therefore, to detect a target, the
radiation pattern of the station must be displaced within the limits of the
given region of space. This displacement of the radiation pattern which is sub-
ject to a definite law is called the radar scan of space.

The scanning systems must have the following properties:

(i) the targets must not be missed during scanning, in other words, every
point inside a given region must be illuminated;

(2) minimumduration for scanning a given region; when scanning is of
long duration the target may have time to movea substantial distance between
successive scans and data concerning its position may becomequite inaccurate;

(3) for each illumination of the target the number of pulses which hit the
target must not be less than a certain minimumto makethe detection of the tar-
get reliable;

(4) the necessary accuracy for determining the coordinates of the detected
target.

Radar stations may operate as search stations or may automatically track the
target or the missile. Information on the detection of targets during search is
transmitted to the display unit of the station, where two coordinates of the tar-
get (usually range and azimuth) are. reproduced on a cathode-ray tube. The third
coordinate is reproduced on the screen of a second tube. During automatic track-
ing the equisignai zone of the station's antenna is directed towards the target
by means of a servosystem. As a result, the position of the antenna determines
the magnitude of the azimuth and of elevation.

Weshall consider briefly the principle of measuring the coordinates. The
pulse method is usually used to determine the range to the target. The radar
transmitter generates short pulses of high frequency, called main pulses. During
the quiescent intervals between these pulses, the weak reflected signals are re-
ceived. The distribution of pulses in time is shown in figure 4.21. The time
between pulses T is known as the repetition rate of the pulses. The range is de-
termined by At--the time between the transmission of the main pulse and the re-
ception of the reflected pulse. During time At the main pulse and the reflected

i
B. M. Stepanov, Radar Survey, Voyenizdat, 1959.
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pulse must cover the distance to the target (range L), which is given by equa-
tion

L= c._t, (4.13)
2

where c is the propagation velocity of radio waves--velocity of light, approxi-

mately equal to 300,000 km/sec.

W

S

direction to target

/

Figure 4.20. Spherical system of coordinates of target.

One disadvantage of the pulse method is the impossibility of detecting and

determining the range of objects closer to the radar station than L = cT/2, be-

cause in this case the reflected pulse arrives when the radiation of the main pulse

has not ended. The pulse method provides an accurate determination of the range.

The average error in a pulse range finder reaches a value of several meters_ and

this accuracy is retained for target ranges of tens of kilometers (40-60 _n).

Direct

_pulses

, pulses IIIII %

/ Reflected __

"T I_,. _t--F"

Figure 4.21. Direct and reflected pulses of radar station.

To determine bearing and elevation the directional properties of the an-

tenna are utilized. In this case, to determine the bearing the antenna system

must have sharply defined directional properties in the horizontal plane, and to

determine the elevation it must have these properties in the vertical plane.

When one antenna is used, it is co_on to use the maximum of the reflected sig-

nal. Figure 4.22 shows the radiation'pattern of an antenna in one plane and the

envelope of the pulse amplitude reflected by the target. When the antenna is

rotated, the radiation pattern passes through the target. When the radiation
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pattern is symmetric, the line 0 target will be the energy center of the point
of pulses. If the received signals are displayed, the pulse with the maximum
amplitude will correspond to a spot with maximumbrightness. The operator tries
to direct the antenna in such a way that a spot of maximumbrightness appears on
the display tube. The greater the curvature of the radiation pattern, the higher
is the accuracy in determining the direction to the target. The direction to the
target may also be obtained by rotating the antenna with a constant velocity. It
is clear that the pulses reflected from the target will form luminous spots. Since
the frequency of pulses is very high, the spots blend together and form an arc.
The center of the arc corresponds to the direction to the target. In somecases,
the direction to the target is determined by means of two antennas with a marrow
radiation pattern (fig. 4.23). In this case the direction to the target is de-
termined by varying the position of the radiation pattern in the vertical plane
to achieve a minimumamplitude for the reflected signal (in this case the mini-
mumof the radiation pattern is directed towards the target)_ and by measuring
the elevation.

_ target
• Yl

o

a b

Figure 4.22. Radiation pattern of

antenna (a) and envelope of re-

flected signal amplitudes (b).

Figure 4.23. Radiation pattern

with sharply defined minimum.

V-beam radiation patterns (fig. 4.24), which have a complex form, are most

commonly used to determine the azimuth and the elevation. The pattern consists

of two plane lobes, one of which is vertical and the second is at some angle to

it. The width of the lobes in the horizontal plane is made as small as possible
(0.5- 2.0o). The aximuth of the target is determined by the vertical lobe from

the maximum amplitude of the reflected signal. Both lobes are used to measure

the elevation. The greater the elevation of target e, the greater is the distance

tt' and the angle p. Consequently, as the altitude increases, the interval of

time between the maxima of the reflected signal amplitudes also increases. If

w_ know angle p and'inclined range L, we can determine the altitude of target

(t). In accordance with the geometry shown in figure 4.24, we obtain

H = tt' tg _;

(4.14)
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tt' = BA = L cos¢ sin p;

L cos _ = ]/12 -- tt 2,

(4.15)

(4.16)

where b is the flare of the radiation pattern.

After transformation we obtain

II=L sin.p tg,a

}r 1 -k sin 2P tg2F-

When the flare is b = 45 ° we have

fi _= L sin p
1/1 -t- s In2P

(4.17)

(4.18)

• __ • .." r...._.._.,7_'_
0

Figure 4.24. V-beam radiation pattern.

The coordinates of the target are determined with the highest accuracy when

the principle of the equisignal zone is utilized. The principle of obtaining

signals proportional to the angles of deviation of the equisignal zone from the

line joining the radar station and the target is analogous to the principle of

obtaining a control signal in the radar homing heads (sec. 3.5). The average

error in the angular coordinates of the target varies in the limits 0.2' - 7.2'.

The principle of the equisignal zone is used in automatic tracking. Figure

4.25 shows the diagram of an automatic tracking system. One of the operating

characteristics of a radar station is the magnitude of space in which the tar-

get can be detected and the principle of scanning this space.

The scanning period of a radar station (Tscan) is the interval of time be-

tween two successive passages of the radiation pattern through the same point in

space. Space may be scanned by using any complex trajectory (fig. 4.26). The

maximum angle between the adjoining elements of the trajectory of the radiation

pattern is known as its pitch (_). The radiation pattern must be displaced with

a definite angular velocity _ so that all given space is scanned in a given

period of time. Thus, angle A will be scanned during the period
p
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t =A_(sec). (4.19)

Illumination time (T ) is the time during which the target is within the
ill

limits of the radiation pattern. The illumination time is equal to

T ¢
ill:T' (4.2o)

where ¢ is the flare of the radiation pattern.

X,\ I I t I L___I

T'I:t
Figure 4.25. Functional diagram of automatic tracking

system, l--strobing pulses; 2--range channel; 3--ampli-

fier and detector; 4--synchronous detector for elevation;

5--servosystem for elevation; 6--synchronous detector for

azimuth; 7--servosystem for azimuth; 8--to range tube;

9--generator of reference voltages; lO--azimuth motor;

ll--elevation motor.

During time T n pulses are reflected by the target. For reliable de-
ill

tection of the target, minimum number of pulses must not be less than n
min

5-6. Several reflected pulses are required because the background noise of tile

receiver may mask a single weak reflected pulse. If_ however_ during each illumi-

nation of the target several reflected pulses with approximately constant _npli-

rude are received, and the time of their arrival corresponds to the position of the

electron beam at the same point on the display tube, their integrated action will

produce a much brighter spot than noise. If the position of the target is deter-

mimed automatically rather than visually, it is possible to decrease n to 1-2,
min

and the scanning period can be decreased (to increase angular velocity _).
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Figure 4.26. Schematic diagram of zig-zag scanning.

The scanning period is determined on the basis of tactical requirements.

Since the radar station is used to detect mobile targets, the target must not

move a greaz distance during one scanning period, otherwise the spot on the

display tube will appear to jump. When the spot jumps the conditions for ob-

serving the targets deteriorate_ there is a decrease in the accuracy of the

coordinates and the orientation of operators becomes difficult.

The evaluation of the maximum allowable scanning period is made by means
of equation

Q

scan V '
max

where Q is the linear dimension of the spot showing the target (scale);V
max

is the maximum velocity of the target, and k is a coefficient which varies

from 1/3 to 3, depending on the tactical mission of the radar station.

The minimum scanning period is a function of the dimensions of the scanned

region, the flare of the radiation pattern of the antenna and the minimum number

of pulses necessary for a clear detection of the target

tzm i J',A,_A,.p) =
scan min _,_ ' (4.22)

where T is the repetition period of the pulses; A , A are the angular dimensions

of the region in terms of its elevation and bearing, and _g, _ are the angular

dimensions of the radiation pattern of the antenna in elevation and bearing.

The pulse repetition period is determined by the maximum range of the
radar station

T = k

2L
max

(4.23)

where k is a factor of safety approximately equal to 1.25.

149



\_ o_.._.._ :./. ' \ ' ,

Figure 4.27. Schematic diagram of circular scanning.

Substituting the value of T into equation (4.22) we obtain

(T ) = 2.5 . (4.24)
scan rain '_,_?

The theoretical minimum scanning period is obtained from equation (4.24).

However, during scanning some points in the scanning region are illuminated dur-

ing two positions of the radiation pattern (fig. 4.26), and it is necessary to

increase the value for the scanning time (Tscan)min slightly. As we have pointed

out, there are several methods of scanning space, and these are determined by

the movement of the antenna radiation pattern. The simplest of all these scan-

ning forms is circular scanning, which is most common in the guidance of missile.

In circular scanning the plane radiation pattern rotates around a vertical axis

(fig. 4.27). This provides for high accuracy in determining range and bearing.

When the V-type radiation pattern is used, the elevation is also determined

(fig. 4.24). A particular case of circular scanning is sector scanning--the

scanning of part of the circumference by plane radiation patterns.

When a needle-like radiation pattern ks used (symmetric with respect to the

direction of maximum radiation), scanning is of the zig-zag, screw, spiral, com-

bined rectilinear-conic and conic types. In these cases the radiation pattern

undergoes complex motion. Of all these scanning methods the one of particular

significance for missile guidance is conic scanning. In conic scanning of a nar-

row sector an equisignal zone is formed which is used in the systems of homing

guidance, beam guidance and automatic target tracking.

Section 4.4. Missile Guidance Using the Methods of Radio Navigation

Various radio navigation systems are used for airplanes. In the simplest

case these systems make it possible to carry out the flight to and from a radio

beacon and, in combination with a radio range finder, to determine the distance

to the beacon continuously. There are also systems which can determine the

bearing of an airplane with respect to the beacon. By finding the direction of

two beacons from an airplane or, conversely, by finding the direction of an
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transceiver which interrogates, while stations A and B have transceivers operat-

ing as responders. The transmitter on the missile transmits a pulse, which is

received by stations A and B. These stations in turn send back pulses, which

are received by the missile. The missile must move towards the target along one

of the hyperbolas determined by the assigned values for the time interval be-

tween the reception of pulses from stations A and B. By measuring this interval

• %target

transmitterreceiver-"" A 'J receiver/transmitterB

Figure 4.29. Schematic diagram of hyperbolic navi-

gation system for guidance of missiles.

at the missile we can obtain a control signal, where this interval is greater or

less than the given interval. This signal, when fed to the control system, pro-

vides for the return of the missile to the given trajectory. The system makes

it possible to have the missile move along a preselected hyperbola passing through

the target. The flight altitude is kept constant, and the sensor for stabilizing

the flight altitude may be some type of an altimeter.

To determine the time when the missile is above the target, a second pair

of stations may be used, which forms a family of hyperbolas for determining the

range. To increase the accuracy in range determination it is desirable that the

family of range hyperbolas in the region of the target intersect with the family

of course hyperbolas at angles close to right angles. When a missile reaches a

given range hyperbola which passes through the target, the homing guidance sys-

tem is turned on (if it is used) or the missile is placed into a dive towards

the target.

Another method in measuring the range consists of determining the time at

the missile between the transmission of a pulse by the missile and the arrival

of the responding pulse from one of the stations (A or B). In this way the

distance to the station is determined. When this distance achieves a given

va!ue_ the missile is placed into a dive towards the target. The latter method

may be used to guide the missile by the method of circular navigation shown in

figure 4.30. In this case only one station is used to assign a trajectory. If

the time between transmission and reception of the responder pulse at the mis-

sile is constant, it will move along a circle with station A at the center.

This time is assigned in such a way that the trajectory of the missile (the
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airplane by means of two ground stations with subsequent transmission of the re-

sults to the airplane, we can determine the position of the airplane with respect

to the Earth's surface. Finally, there is an ever-increasing application of hy-

perbolic radio navigation systems which can determine the position of the airplane

by measuring the time intervals between the arrival of signals from two radio
stations transmitting pulses.l

All of these systems of radio navigation do not determine the flight alti-

tude of the airplane; this must be determined by an independent barometric de-

vice or by a radio altimeter. In guiding missiles by the method of external

guidance, it is possible, in principle, to utilize the same radio navigation means,

provided the information on the position of the missile with respect to the

ground is recorded automatically.

\/ ___\ "',_ x x

"IV'A station B '
-H-_ _ ," " ' I
IA_-'I ,1 I ' ' '
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Figure 4.28. Generation of a family of hyperbolas.

1-6, circles of equal ranges.

As an example, let us consider in more detail the principle of obtaining

guidance signals by utilizing the hyperbolic system of radio navigation. Figure

4.28 clarifies the principle used to form a family of hyperbolas by two radio

stations A and B radiating short pulses of high frequency electromagnetic energy.

The circles with the station at the center represent the geometric position of

points to which the propagation time of the pulse from the station is the same.

if two stations generate pulses simultaneously, and if the latter are received

at some point simultaneously, this point is at an equal distance from both ststions.

If along some curve the time between reception of pulses from stations A and B is

the same, then, due to the constant velocity of radio wave propagation, the dif-

ference in the distances to both stations is also constant at any point on this

curve. It is easy to see that this curve is a hyperbola with its focuses at
points A and B.

One of the possible methods of obtaining a hyperbolic navigation system for

_ 4.29 The missile is equipped with aguiding missiles is clarified in _re

IA. S. Lokk, Guided Missiles, Goste1_izdat, 1957.
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transceiver which interrogates, while stations A and B have transceivers operat-

ing as responders. The transmitter on the missile transmits a pulse, which is

received by stations A and B. These stations in turn send back pulses, which

are received by the missile. The missile must move towards the target along one

of the hyperbolas determined by the assigned values for the time interval be-

tween the reception of pulses from stations A and B. By measuring this interval

target

__" _, missile

transmltte#-" receiverA ° _/ receiver transmltterB

Figure 4.29. Schematic diagram of hyperbolic navi-

gation system for guidance of missiles.

at the missile we can obtain a control signal, where this interval is greater or

less than the given interval. This signal, when fed to the control system, pro-

vides for the return of the missile to the given trajectory. The system makes

, it possible to have the missile move along a preselected hyperbola passing through

the target. The flight altitude is kept constant, and the sensor for stabilizing
the flight altitude may be some type of an altimeter.

To determine the time when the missile is above the target, a second pair

of stations may be used, which forms a family of hyperbolas for determining the

range. To increase the accuracy in range determination it is desirable that the

family of range hyperbolas in the region of the target intersect with the family
of course hyperbolas at angles close to right angles. When a missile reaches a

given range hyperbola which passes through the target, the homing guidance sys-

tem is turned on (i_f it is used) or the missile is placed into a dive towards

the target.

Another method in measuring the range consists of determining the time at

the missile between the transmission of a pulse by the missile and the arrival

of the responding pulse from one of the stations (A or B). In this way the

distance to the station is determined. When this distance achieves a given

value_ the missile is placed into a dive towards the target. The latter method

may be used to guide the missile by the method of circular navigation sho_ in

figure 4.30. In this case only one station is used to assign a trajectory. If

the time between transmission and reception of the responder pulse at the mis-

sile is constant, it will move along a circle with station A at the center.

This time is assigned in such a way that the trajectory of the missile (the
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circle) passes through the target. When the stated interval of time deviates

from the assigned value, a signal is generated which is fed to the control sys-

tem and returns the missile to the assigned circle. Station B in this case is

used to determine the position of the missile along the circular trajectory by

measuring the time that it takes for pulses from the station to arrive at the

missile. When a given point is achieved on the circular orbit, the missile is

placed into a dive.

i receiver

2 transmitter

target

,missile

0

3 receiver

4 transmitter

Figure 4.30. Schematic diagram of circular navigation

system for missile guidance.

The range of hyperbolic and circular navigation systems depends on the fre-

quency used in transmitting the pulses. When ultrashort waves are used, this

distance is limited by the line of sight propagation of these waves and depends

on the flight altitude of the missile. When medium waves and long waves are

used, the range is several thousands of km.

The advantage of using hyperbolic and circular navigation systems for

guiding missiles is the possibility of using one pair of stations to control

many missiles launched from the most diverse launching pads scattered over a

large area. After launching, the missile follows a programed trajectory until

it reaches the zone of a given hyperbola, after which the control system 3 which

depends on the radio navigation system 3 is turned on. The accuracy of hyper-

bolic navigation systems is high.
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CHAPTER5. CONTROLSIGNALSIN SELF-CONTAINEDGUIDANCE

Section 5.1. General Information

The control signals which are used in a self-contained guidance system de-
pend on the type of missile. Thus, for example, the ballistic rocket must move
over a given trajectory during the active portion of its flight. The active
portion of this trajectory in the vertical plane, as provided by the programing
unit, is shown in figure 5.1a. In practice the programing units do not assign
a trajectory, but rather the direction of the rocket's longitudinal axis as a
function of time. As the rocket flies, the action of various external perturba-
tions (wind, dissymmetry of aerodynamic forces, etc.) may cause its trajectory
to deviate from the assigned one. Therefore, the rocket control system must
provide for a comparison of the true position of the mass center with the as-
signed position and to generate a control signal whenthere is a discrepancy
between the two.

vertical flight p ___ B t
a o.

b lateral wind

Figure 5.1. Forms of programed trajectories.

The rocket may deviate from the firing plane assigned to it. Consequently
it is necessary to measure and eliminate the lateral deviations of the rocket

from this plane. Finally, when the rocket has reached a certain speed, its

engine must be turned off by the control system which continuously compares the

true value of the velocity with the given computed value.

In the self-contained guidance of airplane-missiles, the composition of the

control signals depends on the range of the missile. Airplane-missiles of short

range have a rectilinear trajectory which is sometimes subdivided into regions

of different altitude. Here we again have the problem of measuring the direc-

tion of the longitudinal axis of the missile as well as its flight altitude. To
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place the missile into a dive towards the target, it is necessary to measure
its flight range.

Airplane-missiles which fly over a short distance have a rectilinear hori-
zontal trajectory. In order that the rectilinear trajectory pass at a certain
altitude (fig. 5.1b), it is necessary to measurethe position of the longitudinal
axis and the actual flight altitude of the missile. The flight range may be as-
signed by the flight time, in which case the missile must contain a time sen-
sor. As the flight range is increased, the guidance error increases because the
program assigned at the launching site does not take into account the random
variations in the state of the atmosphereover the entire flight trajectory. In
addition to measuring the position of the longitudinal axis of the missile, it
is also necessary to determine the altitude, the lateral displacement and the
range.

Guidance systems must provide for good dynamic characteristics of the mis-
siles and, therefore, require the introduction of signals which are proportional,
not only to the angular and linear coordinates of the missile, but also to the
first and sometimes to the second derivatives of these coordinates. Thus, we
are faced with the problem of measuring the angular and linear velocities and
accelerations of the missile with respect to its three axes.

Whenmissiles with self-contained guidance fly over a long range, we are
faced with the problem of continuously sampling or measuring their coordinates
with respect to the ground. Then we can determine the position of the missile
with respect to the target with coordinates assigned on the missile.

From experience in the navigation of piloted airplanes meanswere developed
for determining the position of the aircraft with respect to the Earth's sur-
face. Based on the geographic charts developed from study of the Earth's motion
with respect to heavenly bodies, terrestrial and astronomical coordinates and
reference systems have been established for use in navigation.

To increase the accuracy of missile guidance, inertial-gyro systems are
used by which we can determine the position of the missile with respect to the
ground. These Systemsmust contain accelerometers which measurethe accelera-
tion of the missile's center of gravity with respect to the Earth; for this
purpose they are mounted on a platform stabilized in space.

In subsequent sections we shall consider devices and systems used in mis-
siles with self-contained guidance systems. Someof these devices are also used
in homing guidance and external guidance systems.

Section 5.2. Sensors for Measuring the Angular Position of the
Missile's Axes

An astatic gyroscope with three degrees of freedom (fig. 5.2) is used to
determine the angles which are formed by the axes fixed with respect to the mis-
sile and the axes of the "stationary" system of coordinates. The center of
gravity of the astatic gyroscope's rotor coincides with the center of gravity of
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the suspension which eliminates _he moments of force produced by gravity. The

variation in the position of the gyroscope's rotor takes place only as a result

of friction in the _uspension axes and due to some residual unbalance in the

rotor. The rate of variation in the position of the gyroscope's rotor is small,

when it has the proper kinetic moment. Therefore, in cases when it is necessary

to establish a definite direction during a short period of time (up to 2-3 min),

it is quite feasible to use an astatic gyroscope for these purposes. An astatic

gyroscope may be installed in any position; it may be used for short term deter-

mination of any direction with respect to a fixed system of coordinates. The

astatic gyroscope must be present in the required direction, since the gyro-
scope itself does not establish this direction.

Figure 5.2. Astatic gyroscope.

The sensors which produce angular displacement signals may be potentiometers

fixed to the frame of the gyroscope. The brushes are attached on the axis of the

respective gyroscope frame. A gyroscope with three degrees of freedom may be as-

sume_with a sufficient degree of accuracy, to be an element without inertia. The
transfer function of such an element has the form

tl

w(I,) = = k, ( 5.1)
0

where u is the voltage picked up from the potentiometer, and _ is the angle of
rotation of the missile's axis.

If the operation of the gyroscope is sufficiently prolonged, or if the

effect of friction on the suspension axes is such that it produces a sub-

stantial precession and_ consequently a noticeable change in the position of

the gyroscope's axes, the gyroscope is compensated. The compensation of a

gyroscope is most frequently achieved by means of two independent systems,

each of which is designed for a specific, suspension frame. It is possible to

compensate for the position of only one suspension frame when it changes its
position more rapidly or when it is loaded more.

The functional diagram of a compensation scheme for maintaining the per-

pendicular position of a gyroscope's frames is shown in figure 5.3. The rela-

tion between the signal sensor and a moment sensor in each compensating system

is crossed, i.e. 3 the compensation of the first frame is achieved by applying
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a momentto the second frame. Compensationmay be achieved by a linear (propor-
tional) system or by a nonlinear system.

The sensors used in navigational systems are integrating floating gyroscopes
which provide accuracy of measurementsand increased resistance to vibration and
to shocks.

Figure 5.3. Functional diagram showing gyroscope
compensation. Ssl , Ss2--signal sensorsof compen-

sating system; Sml, Sm2__momentsensors of the com-

pensating system; subscript "l" refers to first (in-
ternal) and subscript "2" refers to the second (ex-
ternal) suspension frame.

The frame of the device is filled with a heavy liquid. The volume of the
frame and the specific weight of the liquid are selected in such a way that the
buoyancy force of the liquid is equal to the weight of the gyro assembly and,
in practice, completely unloads its bearings. The small load on the bearings
produces a decrease in the friction momentto a negligible value and avoids
transmission of shocks and vibrations. The center of gravity of the gyro as-
sembly and the center of pressure of the liquid must coincide to prevent the
occurrence of an unbalancing moment. Dampingis achieved by friction between
the cylindrical surface of the gyro assembly's case and the thin layer of vis-
cous fluid which occupies the small gap between the cylindrical surfaces of the
gyro assembly's case and the case of the device. With this type of damping,
there is no dry friction. The size of the gap between the case of a floating
gyro and the case of the device is selected so that for all angular velocities
(encountered during operation) of the floating gyro assembly with respect to the
case of the device, the damping momentis strictly proportional to the turning
rate of the floating gyro assembly. The device is placed in a chamberof con-
stant temperature. Constant temperature is required, first, to preserve the
constant viscosity of the liquid and, consequently, a constant coefficient of
the damping moment, secondly, to maintain a constant specific weight of the
liquid and, finally, to preserve the stationary position of the liquid's center
of pressure with respect to the a_is of rotation of the gyro assembly.

157

; J



_&

6 5 _ j 2 , i_I

Figure 5.4. Simplified drawing of integrating gyroscope.

1--brushes of the potentiometer; 2--case of the damper

(rigidly attached to the case of the gyroscope); 3--the

damper disk (rigidly attached to frame of gyroscope);

4--thegyroscope rotor; 5--gyroscope frame; 6--gyroscope

case; 7--exciter; 8--stator of gyro motor; 9--potentiom-

eter; lO--center tap on potentiometer.

Figure 5.4 shows a simplified scheme of an integrating gyroscope. Here

designates the deviation angle of the frame (of the gyroscope axis z) from its

initial position (z0 axis), and _ is the angle of rotation of the gyroscope's
frame about its measurement (input) axis y. We shall show that the angle of

rotation of the frame _ is proportional to angle _. When the frame rotates

around the y axis with angular velocity m, a gyroscopic moment is produced

causing the frame to rotate. The rotation of the frame is prevented by the

moment produced by the damper. When the frame rotates, a moment due to inertial

forces is also produced. The axis of the frame is also subject to the friction

moment; however, as we have pointed out, this moment is very small and may be

neglected. On the basis of Newton's second law, the motion of the gyroscope may
be described by the following equation

where J "'"_iSdlz the moment due to the forces of inertia;_ Kdd-_-_is-_ dt the damping moment,

and H d-d-_is the gyroscopic moment.
dl

Integrating equation (5.2) for zero initial conditions _ = 8 = d_/dt = 0,
we obtain

T d_ _ 1t
a-T+ - (5.3)

J

where T = -- (0.0015 - 0.003) sec is the time constant of the integrating gyro-

scope. , ,
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Integrating equation (5.3) under the same initial conditions we obtain -

n I -- e-t/r).
(5.4)

If time constant T of the device is very small, the second term in the

brackets of equation (5.4) attenuates more rapidly and we may assume that

" (5.5)
Kd

Thus the accuracy of expression (5.5) will be greater when the time con-

stant of the device is less. This must be taken into account when designing

the device.

The application of the integration gyroscope to measure angle _ by measur-

ing directly the variation in angles 8 of rotation of the gyro's frame with re-

spect to the case of the device is feasible only in cases when the possible

values of angles _ and the parameters of the device are such that angle _ _'e-

mains amall during the entire period of operation. However, if angle _ achieves

values for which we cannot assume that cos 8 _ l, the gyroscopic moment will be

d_
equal to H _-_cos 8, which will cause a nonlinear relationship between 8 and _.

Also, in this case, we cannot assume that sin 8 _ O, and the magnitude of angle

will be affected by the angular velocity of the device's case about the initial

position of the z axis, i.e., about the z0 axis. Therefore, if it is necessary

to measure arbitrary angles _, the integrating gyro must be used together with a

servodrive which controls the integrating gyroscope in such a way that the angu-

lar rate of its operation is equal to d_/dt, and then _ _ 0 (the accuracy is de-

termined by the transient processes). Such a system as a whole represents an

integrator of angular velocity operating on the principle of an integrating drive

with the gyroscope as the sensing element.

Section 5-3. Angular Velocity Sensors

Angular velocity is usually sensed by rate or two stage gyroscopes with the

degree of freedom of the suspension restricted by the centering spring and a

damper (fig. 5.5). The direction of the axis along which the gyroscope is not

free (z axis), coincides with the direction of the axis used as a reference to

measure the angular velocity of motion. Rotor 2 rotates with respect to the z

axis, may overcome the force of spring 1 and of damper 4 and may rotate with re-

spect to the y axis. Frame 3 rotates until the gyroscopic moment is balanced by

the opposing moment of the spring. The gyroscopic moment is proportional to the

angular turn rate. On the basis of Newton's second law, the motion of the rate

gyro may be described by the following equation:
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where J is the moment of inertia with respect to the axis of the frame;_ is the

d_

angle of rotation of the frame; hd _is the damping moment; Ks_ is the spring

(s) moment; Hm c is the gyroscopic moment, and w c is the missile's angular rate

of turn.

When the transient process ends (when d2_/dt2= d_/dt = 0), the turn angle

of the gyroscope's frame becomes proportional to the angular rate of turn of

the missile

I/_'c

• _SS _ "Ks

Dividing equation (5.6) by K we obtain
S

(5.7)

T _ d'7.__!_}. 27' d:,-- it,,,c (5.8)
dl _ dl -]" I_ --_ 'Ks

where T = /_-_J= l__; w is the natural frequency of oscillations of the device,

w o 0

hd
and _ - _ is the relative damping coefficient.

2 sJ

Equation (5.8) shows that the rate gyro is an oscillating element. As we

know from the theory of automatic control, the transfer functions of an oscil-

lating element are completely characterized by the quantities w 0 and _. When

the magnitude of _ is small and when the output signal varies with frequency w

close to WO, resonance occurs when the amplitude of the output quantity (in

this case of angle _) turns out to be very large. When _ 0.75, resonance does

not occur.

Figure 5.6 shows the logarithmic amplitude-frequency and phase-frequency

characteristics of the oscillating element. As we can see from the amplitude

characteristics, the relative damping coefficient must lie in the limits _ =

0.6 - 0.8_ because the horizontal region of the amplitude characteristics is

greatest under these conditions. From the phase characteristics it follows

that as the signal frequency increases, the phase distortions increase. Con-

sequently, the natural frequency of a gyroscope must be substantially higher

than the frequencies of the possible input signals, i.e., the frequencies of

the angular oscillations of the missiles. The region of possible output sig-

nal frequencies lies in the range 0 - 2.5 cps. It is not rational to increase

the frequency of the natural oscillations of the device appreciably, because it

may turn out to be close to the vibration frequency of the missile structure and

the device may react to these. The natural frequency of a gyroscope with an air

damper must be 8 - i0 cps.
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Figure 5.5. Schematic diagram of rate gyroscope.

1--spring; 2--rotor; 3--frame; 4--damper.
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Amplitude-frequency and phase-frequency

characteristics of oscillating element.

Friction in the support bearings of gyroscopic devices generates noise in

the output signal. As the loading on the ball bearings decreases, the ampli-

tude noise also decreases, and so does its effect on the output signal. To

decrease the loading on the bearings_ the rotor on the gyroscope is placed in-

to a viscous liquid, i.e., a floating gyroscope is used. The position of the

gyroscope in the viscous liquid also makes St pbssible to increase the damping
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moment and, hence, to increase the degree of damping of the device _. The use

of temperature control for the liquid of a floating gyroscope will retain the

characteristics of the device during the entire period of flight.

Section 5.4. Combined Gyroscope Sensors

A signal which is proportional to the angular velocity and acceleration of

the missile may be obtained by means of an acceleration-rate gyroscope, rep-

resented schematically in figure 5.7. The acceleration-rate gyroscope consists

of a gyroscope with three degrees of freedom, in which one degree of freedom

(rotation around the axis of the external frame) is limited by means of an

elastic coupling with the housing of the device, while the other is limited as

in the case of the rate gyro.

When the missile rotates at constant velocity w with respect to the axis
c

which coincides With the axis of the external frame, the elastic coupling causes

the outer frame to rotate with the same angular velocity. The internal frame

of the gyroscope will react to the angular velocity Wc, just as in the case of

the two-stage rate gyroscope, i.e., it will turn by an angle proportional to

the angular velocity. When the angular velocity of the missile w is constant,
c

the spring of the outer frame is not deformed, while the moment produced by

the spring of the inner frame causes the precession of the outer frame in the

direction of rotation of the case with an angular velocity equal to the angular

velocity of the case.

When the angular velocity of rotation w changes, the angle of rotation of
o

the inner frame varies, and the faster the variation in the angular velocity

Wc, the greater is the velocity of rotation of the inner frame. When this to-

tation is present, a gyroscopic moment appears whose vector is directed along

the axis of the external frame. The modulus of the moment is proportional to

the rate of rotation of the inner frame, i.e., to the angular acceleration of

the missile. When this gyroscopic moment acts, the external frame will turn

until the moment is counterbalanced by the spring moment. This causes the ex-

ternal frame to rotate by an angle proportional to the angular acceleration.

A signal which is proportional to the angular velocity and the angular

acceleration may be obtained by using only one spring (fig. 5.8), which would

produce moments both around the axis of the inner frame and around the axis of

the outer frame. One end of the spring is secured to the internal frame, while

the other is secured to the housing of the device. When the angular velocity

of the inner frame around its axis is stabilized, the spring is stretched and

a moment is produced, both with respect to the axis of the inner frame and with

respect to the axis of the outer frame. The moment with respect to the axis

of the outer frame rotates it by an angle proportional to the angle of turn of

the inner frame, i.e., proportional to the angular turn velocity of the missile.

When the missile is subjected to angular acceleration, the inner frame begins

162



Figure 5.7. Schematic diagram of acceleration-rate
gyroscope. 1--damper; 2--counter-acting spring of
internal frame; 3--counter-acting spring of external
frame; 4--angular acceleration sensor; 5--angular
velocity sensor.

to turn and a gyroscopic momentappears producing additional deviation of the
outer frame, with respect to the housing of the devicej by an angle at which

.k

the gyroscopic moment will be balanced by the sprlng. Thus, the external

frame will turn by an angle which is proportional both to the angular velocity

and to the angular acceleration. The ratio of the signals will depend on the

design parameters, i.e., on the ratio of the arms R1 and R 2.

Figure 5.8. Schematic diagram of acceleration-

rate gyroscope with one spring.

To decrease the weight and size of the control system carried aboard the

missile and also to make the system less expensive, the differentiation and in-

tegration of the signals from a three-stage or a two-stage gyroscope is fre-

quently performed by means of RC networks. It is rational to carry out in-

tegration only when the flight duration of the missile is short because, in

the case of long range flight, the accuracy of missile guidance is decreased.

This is true because the integration of the signals, which correspond to the

drift of the null point of the device, produces signals of substantial magni-

tude causing the inaccuracies. A more detailed examination of differentiating

and integrating networks will be >arried out in Chapter 6.
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Section 5.5. Sensors for Linear Accelerations of the Missile's
Center of Gravity (Accelerometers)

Linear accelerations are measuredby meansof accelerometers using the in-
ertial properties of a freely suspendedmass. Figure 5.9 shows the schematic
diagram of an accelerometer with a potentiometric sensor. Whenacceleration
occurs, the inertial forces of the massovercomethe elasticity of springs 1
and 2 and displace the brush along potentiometer 3.

The equation of motion of the masshas the following form

dxx d2x "dta "'
(5.9)

where x is the linear displacement of the missile at the point where the de-

vice is installed; x1 is the displacement of the mass of the device with

respect to the missile; h dxl is the damping force; kx I is the Spring force
dt

d2Xl
and m -- is the force of inertia which acts on the mass of the device.

dt 2

Rewriting equation (5.9) and dividing it by coefficient k we obtain

T 2 d2x--'-3"l_- 2_T d.q __ xt __ __ __
dr: dl

m d2x

k dr,' (5.10)

where _ _ Ill

k

Equation (5.10) is the equation of an oscillating element. Consequently,

the accelerometer , like any oscillating element, will reproduce with sufficient

accuracy the slowly varying acceleration of the missile, and the error will in-

crease as the frequencies of these accelerations increase. If we take this into

account, the natural frequency of an accelerometer w 0 = 1/T should be selected

so that it is 4 - lO times higher than the frequency of variation in the missile's
acceleration.

l ÷

_0

Figure 5.9. Schematic diagram of accelerometer.

ij2--sprlngs; 3--potentiometer.
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To obtain an electrical signal proportional to the displacement of the

accelerometer's mass, inductive sensors as well as potentiometers are used. The

advantage of inductive sensors is that they have no current contacts and hence

produce no additional loading due to friction, as in the case of a potentiometrlc
scheme.

Section 5.6. Air Speed Sensors or Sensors of Ram Compression

Data on the magnitude of the air velocity or of the ram compression are

used in guidance systems of airplane-missiles and many other types of missiles.

Data on the air speed are frequently used instead of data on ground speed, which

requires complex equipment on the missile for its determination.

The simplest sensor of ram compression is shown in figure 5.10. The pres-

sure force on plate 1 which is in the air stream is balanced by the force of

spring 3. When the ram compression increases, the spring is stretched and the

brush is displaced along the potentiometer by a distance proportional to the

ram compression. The tension of the spring corresponds to the average value

of the ram compression.

Some of the missiles use a propeller ("wind turbine") installed in the nose

of the missile. The angular rotation of the wind turbine is proportional to the

air speed, and the number of turns is proportional to the traveled path. The

principal disadvantage of these sensors is that they increase the drag of the

missile and are of insufficient accuracy.

Manometric sensors do not have these disadvantages. Figure 5.11 shows the

schematic diagram of such a sensor. The manometric chamber 1 is subjected to

the total pressure equal to the sum of the dynamic and static pressures. The

intake orifice for the totalpressure is situated in the nose of the missile.

The missile frame has an orifice for picking up the static pressure. Chamber

1 is subjected to static pressure from the outside, and its displacement is

proportional to the pressure difference, i.e., (Ptotal - Pstatic) Pdynamic

to the dynamic pressure or the ram compression. The displacement of the

chamber is transmitted to the brush which slides along the potentiometer. In

fd

Figure 5.10. Ram compression sen-

sor. 1--plate; 2--missile frame;

3--spring; 4--potentiometer; fd__

flight direction.

2. •

Figure 5.11. Simplest sensor of

air velocity. 1--barometric

chamber; 2--potentiometer; sub-

scripts s = static, r = ram, t =
total.
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many cases inductive sensors which measure the displacement of the movable center

of the membrane chamber are used to obtain an electric signal proportional to

velocity or to the ram compression.

Section 5.7. Altitude Sensors

Barometric altimeters and radio altimeters are used to sense the flight

altitude of a missile. The barometric altimeter measures the relative flight

altltude_ i.e., the flight altitude with respect to the launching site, while

the radio altimeter measures the true flight altitude. The difference in the

values of the flight altitude is clarified in figure 5.12.

flight trajectory

launch area ___

Figure 5.12. Relative, true and absolute flight

altitudes.

Barometric Altimeter. The barometric method of measuring flight altitude

is based on the law governing the variation of air density with altitude.

For altitudes from 0 - ll,000 m

while for altitude above Ii,000 m

ti = 11 000 -k RTII h_ P___kx
i

Pr
t.

where R = 29.27 is the gas constant in m/deg; TO is the absolute temperature at

the surface; T is the temperature gradient; PO is the absolute pressure at the

surface in Newtons/m2; TII is the absolute temperature at the altitude of

ii,000 m, and Pll is the absolute pressure at an altitude of ii,000 m.

(5.1l)

(5.12)
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Figure 5.13. Schematic diagram of barometric altimeter.
1--static pressure receiver; 2--intake pipe; 3--hermet-
ically sealed case; 4--membranechamber; 5--transmitter;
6--brush; 7--potentiometer.

If we assumethat the parameters p , T , T are constant, H = f(p ) may
0 0 ram

be measuredby meansof a barometer. The schematic diagram of a barometric
altimeter is shownin figure 5.13. From the static pressure receiver i the
air enters the hermetically sealed case 3, where the membranechamber4 is in-
stalled. Whenthe pressure (altitude) varies, the movable center of the cham-
ber is displaced and movesbrush 6 (which slides along potentiometer 7 through
transmitter 5. Voltage u is proportional to the displacement of the brush and,
consequently, to the variation in the flight altitude relative to the altitude
at the launching point. The static pressure may also be picked up at the
fuselage of the missile. In this case, a point maybe found on the surface of
the fuselage where the pressure is equal to the static pressure. An intake
pipe is placed at this point with a line leading to the altimeter.

If the altimeter is connected to the flight stabilization system and the
technical mission of the missile requires that it fly at different altitudes,
an altitude preselector is introduced into the altimeter scheme. The simplest
altitude preselector consists of a device to vary the elasticity of the mem-
brane chamber. This device may consist of a spring which is compressedby a
calibrating screw. The screw is set by means of a scale graduated in units of
altitude.

Whenflight takes place over large distances, the assumption that the
parameters PO' TO and T are constant leads to an increase in the methodical

error of the altimeter. In such cases it is rational to use radio altimeters.

Radio Altimeter. The operation of the radio altimeter is based on the
reflection of electromagnetic waves by the surface of the _arth. The source of
electromagnetic waves is a transmitter of the altimeter installed on the mis-
sile. Electromagnetic waves are radiated into space (primarily towards the
Earth) by the antenna of the transmitter and after reflection by the Earth's
surface are picked up by the antenna of the altimeter's receiver (fig. 5.14).

The time it takes the radio wavesto move from the missile to the Earth
and back again depends on the flight altitude
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2H ( 5.13 )
t---_

c

where c = 3"108--the velocity of radio wave propagation equal to the velocity

of light in m/sec.

The velocity of electromagnetic wave propagation is not commensurable with

the velocity of the missile; therefore, the time which it takes for the wave to

move from the missile to the ground and back is practically independent of flight
velocity.

Figure 5.14. Path of electromagnetic waves
when radio altimeter is used.

Existing radio altimeters may be divided into two types:

radio altimeters operating with continuous radiation

radio altimeters with pul_e radiation.

Radio altimeters with continuous radiation are used for altitudes less

than 1_500 m, because the required power increases proportionately to the

fourth power of the measured altitude and becomes prohibitively large for
high altitudes. The principle of operation of a radio altimeter with con-

tinuous radiation consists of the following: the antenna of the radio trans-

mitter radiates electromagnetic waves into space, whose frequency is continu-

ously varied within certain limits from its average value. The variation in

frequency as a function of time has the form of a saw-tooth wave (fig. 5.15).
As shown in figure 5.15a, the frequency of radio waves reflected from the

ground and received by the altimeter varies according to the same law, but
incorporates a delay time (broken line) whose magnitude is

(5.14)
c

At each instant of time the frequency of the transmitted signal differs

from the frequency of the reflected signal by a value equal to the change in

the frequency of the transmitter during the travel of the radio wave from the

missile to the surface and back (with the exception of time intervals 1--points
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i, 2, 3, etc., where the difference in frequency decreases to zero). The dif-
ference in frequencies _ = fl - f2 is easy to determine, if the analytical law
for the variation of frequencies fl and f2 has the form

A = fo(1 :j=aO and [2 = Zo[1 + a (t-- _)1.

The high frequency oscillations fl and f2 are detected, and as a result

a voltage of low frequency _ is obtained (fig. 5.15b)

v= A --f2= foa_ =Aa 2_t_t.

The frequency is measured with a frequency meter and the signal 3 proportional

to the change in frequency, will be proportional to flight altitude H. A

radio altimeter of this type can measure the true altitude with an accuracy
up to 5 percent.

i , •
bo_ _

I 2 3

Figure 5.15. Measurement of fre-

quency of radio altimeter signal.

Figure 5.16. Curves character-

izing pulses of radio altimeter.

For higher altitudes (above 1,500 m), pulse type radio altimeters are used

(fig. 5.16) which send periodic short-time pulses of high power while maintain-

ing the average power of the transmitter at a relatively low level. The ratio

of the instantaneous power radiated into space as a pulse to the average power

of the transmitter is equal to

Ppulse = T

3

P
av TO

(5.15)

where T is the interval between pulses, and T is the pulse duration.
0

The reflected pulses are received by the antenna in the intervals between

transmitted pulses. The interval of time between the transmitted and the re-

flected pulse T = 2H/c corresponds to the flight altitude.
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Section 5.8. Determining the Ground Speed

For missiles with a self-contained control system it is necessary to deter-
mine the ground velocity and from it the traveled path. From the navigatio_
triangle of velocities (fig. 5.17), we can see that ground velocity vector V is
equal to the geometric sumof two vectors--the true air speed Vair (velocity of

the missile with respect to the air) and the wind velocity Q (velocity of the
wind with respect to the ground). For navigation of the missile wemust know
the componentsof the ground velocity along two mutually perpendicular direc-
tions, for example, north-south and east-west (fig. 5.17). The ground velocity
can be determined by using an inertial system of navigation, described in de-
tail in section 5.9. However, in somecases it is only necessary to determine
one componentof the ground speed, for example, if the operation of the engine
of a long-range rocket is to be stopped when the rocket reaches a computed
flight velocity in the firing plane.

15 •

Figure 5.17. Navigation triangle of velocities.

A gyroscopic integrator of acceleration is most frequently used for this
purpose (fig. 5.18). It consists of a 3-stage gyroscope, in which the axis
of suspension for the inner frame does not pass through the center of gravity
of the gyroscope. The axis of the internal frame is directed along the longi-
tudinal axis of the rocket when it is necessary to determine the velocity in
the firing plane. Whenacceleration takes place, a momentwith respect to the
axis of the inner frame appears and as a result the external frame of the gyro-
scope precesses. The angular velocity of precession is proportional to the
momentapplied to the axis of the frame

(subscript pr = precession),
= FI (5.16)_pr _'

where F is the force applied to the center of gravity of the gyroscope; i is
the force lever arm, and J_ is the kinetic momentof the gyroscope.

The momentmaybe computed as the product of forces applied to the gyro-
scope's center of gravity by a lever equal to the distance between the sus-
pension axis of the internal frame and its center of gravity. The force ap-
plied to the center of gravity will be the resultant of the gravity force and
inertial force componentsin the direction perpendicular to the axis of the in-
ternal gyroscope frame.
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6 7 8

Figure 5.28. Integr:ting gyroscope. 1--internal

frame; 2--external frame; 3--compensating motor;

4--compensating contacts; 5--contact disk; 6--cam

for partial disengagement of motor; 7--cam for

total disengagement of motor; 8--housing of de-
vice.

Figure 5.19 shows the accelerations which act on the missile. As we can

see, the apparent force of gravity applied to the center of gravity of the
gyroscope will be equal to

F = m eV cos a + V-_F sin _ -t- g si. (0 -t- a) , (5.17)

where m is the mass of the gyroscope's rotor with housing; _ is the angle of

attack; _ is the slope of the velocity vector; g is the acceleration due to

gravity, and V is the velocity of the missile.

The angle of rotation of the external frame with respect to the x axis

may be obtained from equation

t t

:= .)f O_prdl = Jf Jt.!ml1.[ dVdtcos _. :t- V --didoSin a -_- g sin (0 _- a) ] all.
o o

(5.18)

When the kinetic moment of the gyroscope_ lever arm i and mass m are con-

stant and when the angle of attack _ is small, the angle of rotation of the

frame is the resultant of two components:

ml
_I--=--_-_V --the angle proportional to the magnitude of the flight

_v

velocity at the given instant of time;
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• nil P

J_2 = -)-6- g i sin Odl
"0

--the angle of rotation of the frame due to the force

of gravity;

t

"'! IV dO_ dt

0

--the angle of rotation of the frame due to accelera-

tion directed perpendicular to the velocity vector.

Angle 0 varies in accordance with the flight program_ and therefore the

readings of the gyroscopic integrator must be corrected on the basis of the

given program for 8, and also on the basis of the computed law for the varia-

tion of the angle of attack _ along the trajectory. The necessity of taking

into account the flight program leads to a methodical error of the integrator.

Since the program is carried out with errors 3 these errors affect rocket ve-

locity V determined by the integrator.

• __" " _" V

m dV mVfl_. 0

Figure 5.19. Schematic diagram showing forces
which act on missile.

To increase the accuracy of the integrator, it is necessary that lever

arm i remain fixed in flight; to achieve this, the frames must remain perpen-

dicular. To satisfy this condition, the integrator is equippedwith a com-

pensating device. If the axis of the gyroscope is deflected up or down_ the

lower or upper contact is closed_ and a corresponding signal is transmitted

to the moment motor. When this happens, a moment is transmitted to the axis

of the gyroscope's external frame through a gear drive. This moment produces

the precession of the inner frame and the perpendicular position of the frames

is reestablished. The flight velocity at which the motor is turned off is

determined by the rotation of the disk which carries the contacts. The drive

gear, connected to the axis of the external frame through the transmission,

contains cams. One of the cams will close a contact for partial disengagement

of the motor, while the second will close a contact for complete disengage-
ment.

The ground speed is determined by means of a Doppler radar. As we know,

the Doppler effect is observed whenthe source and the receiver of energy

(sound, light and electromagnetic) are displaced with respect to each other.
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The Doppler effect consists of a variation in the frequency of the received sig-

nals compared with the frequency of the transmitted signals, when there is rel-

ative displacement of transmitter and receiver. If receiver and transmitter are

fixed with respect to each other, then, obviously, these frequencies are the

same. The magnitude of the frequency shift is known as the Doppler shift.

Z i

p

Figure 5.20. Use of Doppler effect to determine

velocity.

In systems which determine the ground speed of the missile, the source of

ultrahigh-frequency is located on the mTssile, which moves with velocity V with

respect to the ground (fig. 5.20). The electromagnetic waves are propagated to-

wards the Earth to point P, and part of them are reflected back to the receiver

located at point C. To obtain quantitative relations, we assume that the pro-

cess transmisslon--xeflection--reception is a single one.

The signal of the transmitter is given by expression

Etr = A sin 2_p, (5.19)

while the received signal is given by the expression

ere= B sin (zVt - _), (5.2o)

where A and B are constants characterizing the signal amplitude; f is the fre-

quency of the transmitter, and _ is the phase shift of the received signal with

respect to the transmitted signal due to finite propagation time.

The phase shift is equal to

where L is the distance from receiver-transmitter to point P; k = c/f is the

wavelength of the electromagnetic energy, and c is the velocity of light.

i
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Since the period of time between transmission and reception of the reflected
signal is small, distance L maybe computedby means of an approximate equation

L (0 := Lo -- Yr. cos _, ( 5.23 )

where L is the distance when t = 0, and _ is the angle between velocity _ and
0

the propagation direction of the electromagnetic waves.

If we take into account expressions(5.22) and (5.23), equation (5.20) may
be written in the form

 e=BSnI2 r, ]------ [ (Do --Vt cos C) .=
• C

[( ,) ]= Bsin 2_:[+ --4_" Vcos_ t--%
C

4:.D o
where .% =_1 is the constant phase lag.

c

From expression (5.24) we determine the frequency of the received signal

(5.241

•,. C C

(5.25)

Consequently, the Doppler frequency is given by expression

The quantity V cos _ represents the ground speed component in the propaga-

tion direction. To determine the total value of vector V, it is necessary to

make use of at least three beams which are not copianar. The velocity of the

missile determined by means of the multibeam system represents the ground speed

in a system of coordinates fixed with respect to the missile.

Let us consider the case when the antenna system is stabilized in the

horizontal plane. The antennas are rotated in the horizontal plane by means

of servosystems in such a way that the horizontal projection of the ground ve-

locity vector is along the line bisecting the angle between the rays K and L

(fig. 5.21). If the four beams K, L, M and N are directed symmetrically with

respect to the x and z axes, we have

k__ := l_ : ..... _lx :: --t_ x ::: COS _,

k, := ty :- ,,,y.: ,,_= _ _os_. (5.27)
k: := --- [; :-: -- ltl_ := 11z : : COS O,

where k, I, m and n are unit vectors in the direction of the four rays, and kx,

_, kz, etc., are components of the vector k, etc., along axes which are ortho-

gonal to the x, y, z coordinate System.
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If the condition of symmetry is fulfilled_ we have

_0 :: Vx :_ V cos O,

Vy =_i t sin O,

Vz =- O.

where 0 is the slope of the trajectory.

From equations (5.26), (5.27) and (5.28) it follows that

2 jvk ==-'vl == _ V (cos"(cos0 -- cosZ_.sin0),
.,

2
v,. = v. = 7 V (-- ccs "tcos 0 -- cos _ sin 0).'

As a result we obtain

(5.28)

(5.29)

• 4 Vccs_cosO 4
=:_ Vho(v, -- v.,) = (_/-- v_) = x X ccs _t (5.30)

Expression (5.30) shows that the difference in the Doppler frequencies for

beams directed towards the nose and the tail of the missile is proportional to

the horizontal component of the ground velocity vector. A single integration of

the signal, which is proportional to th@ horizontal component of the ground speed,

makes it possible to determine the path traveled by the missile over the surface
of the Earth.

If the frequency difference v k - Vl or v - v is not equal to zero_ thenm n

the angle between beam K and the horizontal projection of the ground velocity

vector and the angle between the beam L and the same projection are not equal

to each other. Let us show that the Doppler frequency difference v - v is
k i

proportional to the angle between the horizontal projection of the velocity

vector and the x axis (fig. 5.21). From geometric considerations we have

Vx = V ccs 0 ccs 13, '1

.Vy ----Vsifi O,

V_ -- -- V ccs 0 s_n i3,

(5.31)

where _ is the angle between the horizontal projection of the velocity vector
and the x axis.
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By making use of equations (5.23), (5.24) and (5.25) we obtain

2
vk := --_ V [ccs 0cos _ cos-_-- shl 0cos _ -- Cos0 sin G],.COS

2
vl := _- VIcos 0cos _,cos"_- sin 0 cc,s :_ -t" cos 0 sin _c_ o].

/v

(5.32)

The difference v k - vI is equal to

4 4
"_k-- "l .... "-_ V ccs 0sill _ cos _ --: -- cos _ sin _,Vho ( 5.33 )),

When angle _ is small, sin _ may be replaced by angle _. Then the difference

of the Doppler frequencies for rays directed towards the nose or towards the tail

of the missile is proportional to the angle between the axis of symmetry of the

Y

H

/_ • i

Figure 5.21. Determination of hori-

zontal component of ground speed.

F

0

Figure 5.22. Determination of

errors in velocity.

rays and the horizontal projection of the ground speed vector. If it is obvious

that cos & and V cannot be equal to zero, while the difference v k - Vl = 0 only

when _ = O. On this basis the signal proportional to Vk - Vl is used by the

servosystem to rotate the antennas with respect to the vertical axis.

To determine the components of the ground velocity, we may use antennas

which are fixed with respect to the missile and a computer to record the true

position of the missile and, consequently, of the antennas with respect to the

Earthrs surface. The accuracy achieved in maintaining the Doppler antenna sys-

tem for measuring the ground velocity in the horizontal plane or the accuracy of
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Figure 5.23. Determination of

signal from individual surface

element.

Fre

s

=i-

Figure 5.24. Form of signal re-

fleeted from individual surface

element; re = receiver.

recording the position of the antenna system with respect to the Earth's sur-

face, has a substantial effect on the errors introduced by this system.

Let us evaluate the errors produced by the deviation of the antenna from

the horizontal plane. To simplify calculations we shall consider the two-

dimensional problem. Let us assume that a vertical plane passes through the

ground speed vector (fig. 5.22). The angle A chmracterizes the error of stabil-

izing the antenna along the vertical. If the error A is not equal to zeroj

then

2V " ._ "•_ = v_- v,,= -)-- (cos "_k-- cos "_D [cos (F -F 0 -- A) +

_V
-t- cos (r -- 0 -1-_)J --=_ cos rcos (0 -- _).

(5.34)

When 8 = 0 and A = i°_ the error incurred in determining the velocity is approx-

imately 0.015 percent. When e = 15 ° and A = i°, A V = 0.0196 percent.

All of these expressions are derived for the case of an infinitely thin

radio beam. Actually_ electromagnetic energy is radiated by an antenna whose

radiation pattern is not infinitely narrow. The radiation pattern determines

the radiation power level in a given direction. The maximum illumination en-

ergy is directed along the line bisecting angle _ (fig. 5.23). As the missile

moves from point PI to point P2' the element of surface q is illuminated with

varying power. Also, angle y changes with time_ which causes a change in the

Doppler frequency. Figure 5.24 shows the form of the signal reflected from an

individual surface element. The average value of the Doppler frequency corre-

sponds to the direction of the beam maximum to the reflecting element q. The

total signal reflected by element q consists of a sum of many signals, similar

to one shown in figure 5.24. Since at each instant of time the antenna illumi-

nates an infinitely large number of surface elements, the reflection of the sig-

nal will also consist of an infinitely large number of signals, and the ampli-

tudes and phases of the signals reflected from each element will be different.
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The properties of such a signal are subject to statistical laws. It has been
determined that the spectrum of the reflected signal is continuous and that its

2V
middle point corresponds to the Doppler frequency v= Q-cosy0(Y0is the angle be-

tween the maximumof the radiation pattern and the velocity vector).

Section 5.9- Inertial Systems of Navigation

Inertial navigation consists of determining the fix of an object near the
surface of the Earth by measuring the acceleration of a flying vehicle with
equipment carried aboard and performing a double integration of the signals ob-
tained. The sensors of inertial systems of navigation are of two types. Sensors
of the first type consist of three accelerometers oriented along the known sys-
tem of coordinates; to orient the accelerometers, it is necessary to have a stable
platform of a certain type. In the sensor of the second type, six accelerometers
are rigidly attached to the frame of the missile. Sensors of the first type are
widely used while sensors of the second type are not too well known. In the
following discussions we shall be concerned with inertial systems operating with
sensors of the first type. These inertial systems in turn are divided into several
types, depending on the system of coordinates used for the orientation of the
accelerometers and the structural relationships between the accelerometers and
the stable platform. Let us consider two principal types of these inertial sys-
tems. In systems of the first type, two accelerometers are oriented in the
horizontal plane in two mutually perpendicular directions, while the axis of
the third accelerometer coincides with the ground acceleration vector. In sys-
tems of the second type, the Cartesian system of coordinates, in which the ac-
celerometers are oriented, is fixed in universal space.

i. Inertial Systems of the First Type. Inertial systems of this type
are knownas the Schu!er type. This is the namegiven to a pendulum with a sus-
pension equal to the radius of the Earth and a period of oscillations equal to

T = 2w_ = 84.5 rain.

Let us assumethat a flying vehicle, carrying a stable platform with ac-
celerometers, movesnear the surface of the Earth (fig. 5.25) with an accelera-

dV d2x
tion j =__ =__ in a direction corresponding to one of the axes of the accel-

dt dt 2

erometers. If the platform is deflected by a small angle _ from the horizon
(local), the signal produced by the accelerometer will be equal to

j +g_.

To rotate the platform so that it follows the horizontal plane we
generate a compensating signal proportional to the integral of the accelerom-
eter's signal

178



t

,_ =k .I(j -t- g_)dr.
O. ,

We obtain the rate of turn of the platform _g, if we divide the compen-

sating moment by the kinetic moment H

l

g = _tt S (j 4. g_,) dr,
o

(5.35)

where _g is the central angle of rotation of the platform.

accelerometer

Earth 's center

Figure 5.25. Position of stable platform of first

type during movement of missile; subscript g = gyro,

subscript c = central.

The path x traveled by the missile may be represented in the form of the

central angle _c = x/R, where R is the Earth's radius. If at any instant of

time angles _ and Be coincide, this means that the stable platform coincides -

with the line-of the local horizon and that angle _ = 0. Consequently, the

following relation is always true

The angle

: _ - _ • (5.36)
c g

t t
1

- .I.Ii (5.37)
0 0

t
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is determined by the flight characteristics of the missile and consequently is
somefunction of time.

Let us rewrite equations (5.35) - (5.37) in operational form

A l

-1 !i.

(5.38)

The system of equation (5.38) corresponds to the diagram shown in figure 5.26.

This schematic represents a combined servosystem with an auxiliary control of the

second derivative by input quantity
c

2nd integrator

Figure 5.26. Diagram of system for stabilizing_lat-
form with accelerometers.

The transfer functions for output quantity
g

following form

¢ (p)=
k

*+yg

and for error _ have the

(5.39)

s(p)=
(5.40)

p_+ y g

From transfer functions (5.39) and (5.40) or from system (5.38), we obtain

equations for the closed loop system

ig"i_g+-F t k -, _ o.= _-R_c + _g,"c,
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k _ I k)_+ 7_g_=(_ H j" (5.42)

If De select

k I

transfer function (5.39) will become equal to unity, while transfer function

(5.40) will become equal to zero. This result shows that there is an ideal

tracking of the horizontal plane by the stable platform. Since angle _ turns

out to be equal to zero, the normal to the platform will always coincide with

the Earth's acceleration vector. With this adjustment, the missile contains a

vertical which is not perturbed.

Where
k i

-equation (5.42) takes the form
H R'

_+ -_-_= o. (5.44)

It follows from equation (5.44) that if we have an initial error in the

local vertical _0 and if _0 = 0, the platform will be subjected to undamped

oscillations

= _0coso0t, ( 5-45)

w 0 =__is the angular frequency of oscillation of the Schuler pendulum.
where

R

ist integrator _ ist integrator

2nd integrator

computer [z ]_, .

._ +%
C05_

E_ 2nd integrator

X- longitude

E _

?- latitude

Figure 5.27. Diagram of gyroscopic navigation system

giving fix of missile in geographic system of coordi-

nates.
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If the initial errors are _O = BO= O, the platform will always be horizon-

tal and the accelerometers will produce a signal equal to the acceleration of
the missile. The output of the first integrator (fig. 5.27) multiplied by R
will, in this case, yield the ground speed of the missile, while the second in-
tegrator will showthe traveled distance. If the accelerometer shownin figure
5.27 and figure 5.28 is oriented in the north-south direction, the output of
the second integrator _g, whenk/H = I/R, will show the actual latitude of the
missile _. In a similar manner, but with somespecial features, a system is
designed to indicate the longitude.

Figure 5.27 showsthe diagram of a gyroscopic navigation system which
gives the fix of the missile in the geographic system of coordinates. After

the readings of the accelerometer JNS,"oriented in north-south direction_ are

integrated, we obtain the angular velocity of latitude _ and latitude q0. The
first integral _gOf the signal from the accelerometer, which is in the west-
east direction JWE,"does not constitute the angular rate of change of the

longitude X. To obtain _ it is necessary to divide _gby cos q_and to take into
account the angular diurnal rotation of the Earth w

e

(5.46)
cos?

The mathematical operations designated by equation (5.46) are carried out

by means of a special computer. After the signal _ is computed, it is integrated

and the true longitude is obtained. The gyroscopic navigation system represented

schematically in figure 5.27 is not suitable for navigation in the polar regions,

because expression (5.46) has a singularity when _ = w/2. It is possible Co con-

struct a gyroscopic navigation system using other coordinate systems without this
shortcoming.

ist integrator " : r_g platform

• -_ f "_

Figure 5.28. Simplified diagram of system for

stabilizing platform with accelerometers.

Let us pause briefly to consider the accuracy of these gyroscopic naviga-

tion systems. The initial error B 0 in the orientation of the platform accord-

ing to (5.45) will produce a harmonic component in the signal of the accelerometer
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equal to - g_o cos _0 t. This component, after it is integrated twice, will pro-

duce a harmonic component in the error of the traveled path

tl

• . 2

O0 _0

= _oR (1 -- cos %t)•

Equation (5.47) shows that for every angular minute of initial error
0

the harmonic component of the error in the traveled path is equal to i nautical

mile (1.84 km). Since the sign of the error gx coincides with the sign of _ ,
0

the maximum value of the error will be equal to 2 nautical miles for each angu-

lar minute
O"

A more annoying error is produced by the drift of the stable platform.

Let us assume that we have_ at the instant of time t = O, an initial drift of

the stable platform with constant angular velocity _g. In this case equation

(5.35) takes the following form (when k/H = l/R)

t

i!(] + ¢;) + ,,g](0.

(5.48)

Since we are considering only the error produced by the drift v , we shall

g

assume that j = 0 and _ = 0. In this case _ = _ , and expression (5.48) after
g

differentiation takes the form

where

°" _ " (5.49)

d
6(l)_l(0 is the Dirac function.

If we solve (5.49) by using the Laplace transformation, we find

_g---- _ sln %t.
mO

(5.5o)

The drift of the stable platform also produces its oscillation with the

Schuler period. As a result, the output of the accelerometer will have a sig-

nal g_g which, after double integration_ will give the error in the traveled path
or in the range
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It

,_x = _"_ " sm ,oj _#czt= R_ t-- _ sm ,,,ot . (5.51)
_o b b _o

Errors in range have a component which increases in a linear manner and an

oscillating component.

The requirements for small drift in the stable platform are very critical.

Thus, when the drift is Vg= 0.i deg/hr, the platform begins to oscillate with

an amplitude of 1.35', which corresponds to a distance of 2.5 km. With the

same drift, the error which increases linearly becomes equal to 8.4 nautical

miles (15.6 km) during an 84 min flight.

For missiles with a short flight duration (several min) sin _ t in equa-
0

tion (5.51) can be replaced by the first two terms of the series

sino_o/_.O)o/ (_'ot)3-
6

Then equation (5.51) for the deviation error of the gyroscope takes the form

_3

fix = gVg 6 "

(5.52)

Equation (5.52) may be obtained from two considerations. For short intervals

of time, the diagram of figure 5.28 may be considered to be of the open loop type.

In this case, the drift of the platform with a constant velocity produces an ac-

celerometer signal which increases in a linear manner. A double integration of

this quantity leads to expression (5.52).

In conclusion we note that equation (5.51) may be obtained from an analysis

of the diagram shown in figure 5.28. The drift v may be considered a pertur-
g

bation acting at the input of the platform. The transfer function for the out-

put of the second integrator Ax/R in terms of the perturbation 9 will have the
g

form _02 1
• (s_) = -- ,

p_'+ _ P

where
2 g

O) 0 _ _,

R

For a step function Vg(t) = v "i (t) we obtain the following transform of
g

the output from the second integrator
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L p_+,o_ p

The original of this transform is precisely expression (5.51) previously derived.

2. Compensation and Damping of Inertial Systems of the First Type. When

auxiliary sources of information on the coordinates of the missile are avail-

able, the readings of the inertial system of n_vigation may be compensated, i.e.,

the accumulated errors may be eliminated. The method for eliminating error de-

pends on the manner in which the external information is fed into the system.

If the missile contains equipment which can recognize ground objects with

known coordinates, the errors are eliminated as these surface objects are iden-

tified. Frequently, the external information is supplied continuously. In

these cases, the compensation of the self-contained guidance system may take

place continuously. The sources of external information for compensating in-

ertial systems may be in the form of astronavigation and radionavigation methods.

As an example let us consider the compensation of an inertial system 2 (fig.

5.29) by an electronic device ! for measuring the ground speed vector of the

missile based on the Doppler effect. This device produces a signal V + f,

where V is the ground speed and f is the interference whose spectrum is of a

high frequency nature and whose mathematical expectation is equal to zero. How-

ever, the inertial system produces a signal V + _ = _gR, where V is also the

value of the true ground speed while _ is a slowly varying error. If we take

into account the initial error _0and the drift of the platform with constant
velocity, we have

a..= % + %, sin (%l -- _.),

where

%= gV_=v R.
_,o2 g

°

is the constant component of the error;

is the amplitude of the error's har-

monic component, and

o ---=-arc tg_oYg_-°
is the phase of the error's harmonic

component.

The compensation of the inertial system is accomplished by mixing V + f

and V + & at the single integration servosystem with two inputs i and 2 (fig.

5.29). The composite signal V (subscript o = output) from output 3 is fed to
0

the second integrator of the inertial system which computes the path. The

key Key in front of the servosystem integrator is used to turn the compensat-

ing signal, which is fed from the Doppler sensor off and on.

At input i, the servosystem h_s a transfer function in the form of a low

frequency filter
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T_p-]- 1 '

while at input 2, it has the form of a high frequency filter

_7 2 ( p ) = TKp
T_p-}- 1

The composite signal V 0 at the input of the servosystem is obtained from

the principle of superposition

/2OO

0' + [) + r_ ( v + ;_) = (5.53)

f T_p

=V+ _,p_i. 1. + r_,p+l _"

Figure 5.29. Functional diagram showing compensation

of inertial system by single integration.

Expression (5.53) shows that output 3 contains a much cleaner signal of

the ground speed than the one avai:able from the acceleration integrator, be-

cause the high frequency interference is eliminated by the low frequency filter,

while the slowly varying error is eliminated by the high frequency filter.

Let us compute the error in the traveled path Ax due to the inaccuracies in

the inertial system when operating in conjunction with the compensating system

described. If we neglect the transfer component in the compensating servosys-

tem_ we have

Ax=-_ [r_,_]= r_o + r_,,,s_ (_ot+ _).

Thus, the error which increases linearly is absent. We have a constant com-

ponent T k &O = T v R and an oscillating component with an amplitude T v R,
k g kg

186



which is due to the deviation of the platform, and a constant componentwith an

amplitude Tkg0_g-_due to the initial error 90. The error due to the deviation

of the platform is equal to

&x = 3iTk_g deg/hr • 10-30

whenv = 0.i deg/hr and T = 30 sec, the quantity Ax = 93 m.
g k 0

error due to initial conditions will be

The amplitude

o

o

When 90 = 1°/60 and T = 30 see, the quantity &x = 70 m.k m

For long range flights, these errors are insignificant. This situation

makes it possible to relax the requirements for the values _0 and v substanti-
g

ally and to apply less accurate and, consequently, cheaper inertial systems

when compensation is used. The constant error Ax may be eliminated completely
0

by changing the schematic of the compensating servosystem. The signal from the

Doppler sensor is first integrated and fed to the input of a double integrating

servosystem, as shown in figure 5.30. One of the integrators of this system is

the second integrator of the inertial system. From this diagram it is easy to

v'it2_} ,.:_

From Doppler se_ lJ_.

V+_ "_0

From ist integrator'[ _[__--C

of interial system

Figure 5.30. Diagram of double integral compensation

of inertial system.

find the transfer function of the servosystem and to determine the values of the

output signals x and V .
o o

The oscillating component of the error may be eliminated by damping the

inertial system. By using the signal from the Doppler sensor of the ground

speed, we may damp the system without disturbing the conditions which eliminate
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perturbations, i.e._ we can obtain a Schuler pendulum with damping. Figure

5.31 shows how the Doppler signal for the velocity is used to damp and com-

pensate the inertial system. The damping signal is mixed with the output of

the first integrator by means of a servosystem: similar to the one used for
compensation (in particular_ this is done to decrease the effect of inter-

ference on the circuit of the gyroscopic inertial system). It follows from the

diagram shown in figure 5.31 that there is one other control circuit which can

be used in addition to the one shown in figure 5.28. As in the preceding case,

let us derive the expression for the transfer functions for _ and _.
g

damping compens at ing

gyro system gyro system

Doppler sensor , " __
• t I I

" v ! i I I

I__ [-_ _ I_', _ ]Wg 2nd integrator

Figure 5.31. Functional diagram showing damping of

inertial system.

The transfer function for

at output i g
has the following components:

o,(#)-:..<_;+ _Ip _ 0,_
-- l ,

_';'_ .:-I-_ p+oo_
I- (7_.#+ ])? d .

(subscript d = damping);

a component at output 2

a component at output 3

_>,_(#) =

(Td; + 1);
l

1 + (_a;.+ l)p

p I

(Td:,+ _)? Td

1 + (Tctp + Op :+ rd #+'_

a component

(5.54)

(5.55)

(5.56)
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As a result, the transfer function for _ has the form
g

I

¢(/,)=¢,(/,)+¢2(;)+%(i,)= . =I.
I

(_.57)

Thus, signal _ is passed without distortion, i.e., in the same manner as
C

when compensation due to the Doppler device is absent• By following the same

arg_nent, we can see that the transfer function for _ will be equal to zero.

Thus, the property of the inertial system of freedom of perturbation has been

retained, while the equation for the free oscillations has the form

or

, I ;. 2_
-I--7- <-i-o>o_ = o

°.

'_ ())0 j -i-

where

o2 2 ;°>o
R rd 2 rd )/_-

The initial error will now be damped according to the law

e-¢to0 t

I/l --_:
,_ sin (<'>ol/] --r2t+ <e),

where

_= _rc ig (VI-CVO.

As we know, the optimum damping coefficient _ is equal to _. With

this damping coefficient, the damping of the initial error _ will be lowered
' 0

to 5 percent of its initial value during the half period of the natural oscilla-

tions, i.e., in this case, during a period of 42.2 min. The constant Td for

=2v_/2 is equal tov/_ 470 sec. The large value of T means that the gain
d

of the integrating element I/T d is small. When integrating motors are used_ the

small value for the coefficient I/T d is obtained when the transfer number of the

reducer is high.

3. Inertial Systems of the Second Type. In systems of this type Zhe stable

platform with accelerometers remains stationary in universal space. In this con-

nection, as the missile moves close to the surface of the Earth, the components
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Vo

a b

Figure 5.32. Variations in position of gyrostable plat-

form of second type daring missile motion; b, structural

diagram.

and g , which are sensed by the accelerom-
of acceleration due to gravity gx_ gy z

eters, will vary continuously (fig. 5.32a). The readings of each accelerometer

will be _+gxl _ + gy and _ + gz_ respectively. To obtain velocity components

x, y, z and missile coordinates x_ y, z, it is necessary to eliminate com-

ponents gx' gy and gz from the readings of the aceelerometers (fig. 5.32b)

Y

... I--,-I

-- 7;---,

a b

Figure 5-33. Diagram for determining missile

coordinates using stable platform of second

type.

These components may be computed if we know g and the coordinates x, y, z. By

placing the coordinate system x, y, z at the center of the Earth (fig. 5.33a),

we note that gx = g x/R; g = g y/R and g = g z/R. We can see that the ana-
Y z

lytical exclusion of component gx (and similarly g and g ) again leads us to
y z

a closed loop circuit with two integrating elements and a gain of g/R = w 2 (fig.
0

5.33b). Under initial deviations, the circuit again undergoes undamped oscil-

lations with the Schuler period.

Thus, the compensation for the acceleration due to gravity in the read-

ings of the accelerometers from the standpoint of dynamics is equivalent to

the simulation of the Schu!er pendulum by the stable platform with accelerom-

eters. In this connection, all of the considerations concerning the accuracy
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_nd compensation of inertial systems remain valid. We note that for a flight of

short duration and a steep trajectory, like the one encountered in ballistic

missiles or defensive missiles, we do not have to consider the variations in g ,
x

g and g . In this case 3 the integration scheme turns out to be an open loop
Y z

system.
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CHAPTER 6. THE HANDLING OF CONTROL SIGNALS ABOARD MISSILES

Section 6.1. General Information

In Chapters 3-5 we considered the methods of obtaining control signals

for various methods of missile guidance. In many cases, these control signals

contain noise as well as the useful component. To combat noise, special filters

are used which transmit the useful signal without appreciable distortion and

which eliminate noise to a large degree. As a rule, the automatic pilot of a

missile is fed with several control signals. Thus, the problem of signal sum-

mation arises. In the course of summation, the specific weight of each signal
is determined by the control law.

To provide for high dynamic properties and for impact accuracy, the con-

trol law incorporates signals which are proportional to the derivatives and to

the integral of control signal components. Sometimes these signals, propor-

tional to derivatives with respect to different quantities, may be obtained

directly (rate gryroscope, aceelerometer). If this cannot be achieved, then

the signals proportional to derivatives may be obtained by differentiating the

corresponding signal. Integration of some signal is achieved by various elec-

trical or electromechanical devices. In some cases the missiles are not stabi-

lized in space with respect to the longitudinal axis and may occupy an arbitrary

position. If the control signals are sent from the ground or from an airplane,
they are associated with the ground coordinate system. To utilize these sig-

nals properly aboard the missile, they must be transformed from the ground sys-

tem of coordinates into a system of coordinates fixed with respect to the mis-

sile. This operation is carried out by special devices.

These problems, associated with some form of signal transformation, are

considered in the present chapter.

Section 6.2. Smoothing and Filtering of Signals

The control signals which are fed from the sensors of the missile tracking

system frequently contain harmful high frequency components in addition to the

slowly varying useful component. In some cases a high frequency component may

be due to some form of modulation of the control signal produced, for example,

by the rotation of the radar antennas polarization plane, which is part of' the

missile control system. In other cases, the high frequency component is due

to a combination of noise, produced by the most diverse sources in the control

system. In both cases the problem arises of isolating the useful signal from

a background of high frequency noise. Below we shall consider filters which

reduce noises of frequencies in a definite range.
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a

b

u, c_ C_ C'_rll Uz

Figure 6.1. Diagrams of smoothing filters.

a--single-stage filter; b--two-stage filter,

c--three-stage filter.

Let us consider the simplest and most common filters which utilize RC ele-

ments. Figure 6.1 shows the schematic diagrams of smoothing filters consist-

ing of one, two or three stages. The transfer functions of these filters have
the form

single-stage filter

w,(;)= _ • (6 l)
Tcp+2 '

(T@ = Tfilter);

two-stage filter

W2 (p) = 1 ; (6.2)
T_p2+4 Tcp+ 3

three-stage filter

w_(;)= _ (6.3)
T_p'+6T_p=+ 10Tcp+4

In all of these equations, the time constant T@ is given by the relation-
ship

T,_ = re.
(6.4)

To define the characteristics of filters, we introduce the concept of

transfer coefficient. The transfer coefficient is equal to the ratio of the

active output sinusoidal signal to the active input sinusoidal signal. For the

filters shown in figure 6.1 the transfer coefficient is given by equations
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single-stage filter

k_= 4_ _ (6.5)
u l - 1'_"-i- ,1

two-stage filter

4: "'_- _ (6 6)
/ ,_l q- 107.2-t-9;

ll 1 _

three-stage filter

_= ,4__= _ (6.7)
ul. _ 1/,_6 -_- 16_'_-[- 52f_ q - 16

In equations (6.5) - (6.7) b is the dimensionless signal frequency given

by expression

b = T@w. (6.8)

If, in equations (6.5) - (6.7) we let b = O, we obtain the value of trans-

fer coefficients for constant voltage. As we have already stated, the control

signals aboard missiles usually consist of a useful signal due to the deviation

of the missile from a given flight trajectory and a noise signal, which usually

is of a higher frequency. For simplicity we shall assume that the useful signal

is constant in magnitude and consider how the smoothing filter transforms the

voltage consisting of a constant component and a sinusoidal component. The sig-

nal at the input to the filter is characterized by the ripple ratio, which de-

fines the ratio of the active value of the variable voltage component to the

constant component

ql - , (6.9)
UI=

The signal at the output of the filter is also characterized by the ripple
ratio

q_=_. (6.1o)
U; =

The ripple ratio at the output may be expressed in terms of the ripple

ratio at the input and the transfer coefficient of the filter by means of equa-
tion

k~

q_:q_'_' (6.11)

where

111_=
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and

__ l12 =_ °

Substituting into equation (6.11) the values of the transfer coefficient

of various filters, we can obtain, on the basis of expressions (6.5) - (6.7),

the values of the ripple ratios at the output

single-stage filter

q2 = ql .___ ;+ (6.12)

two-stage filter

three-stage filter

3

q2-- qx _l,____ lO,_2-i - 9 ' (6.13)

4
q2 = q* _,o.±,+)

_/p.G-b 16 _.' + 52 _._ -+- 16

Equations (6.12) - (6.14) may be represented in brief form

q2 = ql k" (6.15)

Figure 6.2 shows the graph for the constant k as a function of the dimen-

sionless frequency _. These graphs are constructed on the basis of equations

(6.12) - (6.14). Knowing the frequency of the variable component and of the

ripple ratio at the input to the filter, and also the required value of the

ripple ratio in the output signal, we can use the graphs in figure 6.2 to de-

termine the necessary filter constant T_. The calculations are carried out in

the following order:

(I) from the known value ql and the assigned value q2 we find the re-

quired value k = q2/ql;

(2) from the graphs in figure 6.2 we obtain the value of _ corresponding

to a given k; in this case, as the value of k becomes smaller, the necessary

filter scheme becomes more complex;

(3) knowing _ and w, we use equation (6.8) to determine the time con-

stant of the filter: T@ = _/w.

This method of selecting the parameters of smoothing filters may be ex-

tended to passive smoothing filters of any type.
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0.2 ._
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Figure 6.2. Characteristics of

smoothing filters. 1--single-

stage filter; 2--two-stage filter;

3--three-stage filter.

Figure 6.3. Diagram of active

smoothing filter. I and 4--

filters; 2--indicator; 3--ampli-

fier.

In complex control systems, it is sometimes necessary to smooth a signal at

a specific point in the control circuit, but in doing so, it is undesirable to

introduce a time delay associated with the smoothing filter. This situation

arises, for example, in systems where a human operator participates in the con-

trol of the missile. High frequency noise may produce undesirable oscillations

of the instrument needle being used by the operator. By using a filter, a sig-

nal may be smoothed out quite effectively before it is fed to the indicating

instrument. In order that the introduction of such a filter does not increase

the delay in the control circuit, the system shown in figure 6.3 is used. The

noise is reduced to a desired degree by filter i and the signal is fed to in-

dicator 2. The indicator is followed by an electronic amplifier 3 with high

gain k and with a feedback loop containing filter 4, analogous to filter i. The

transfer function of the entire system shown in figure 6.3 is given by expres-
sion

l,V (p) - _ Wd' (p) __ 1 _ I, ( 6.16 )
1

k we, (p)

i.e., for large values of k the sysSem has no phase shift. It is obvious that

as k becomes larger, equality W(p) = i is fulfilled more accurately. Thus, the

diagram of an active filter shown in figure 6.3 solves the problem, smoothing

out the signal without introducing any delay in the transmission of the signal.

In a series of cases, the reduction of noise contained in the control sig-

nal is simplified if sensors are available which measure directly the first

and sometimes the second derivative of the control signal. Thus, for example,

in controlling the flight altitude, the signal of a variometer is proportional

to the first derivative with respect to altitude while the signal of a normal

load factor is proportional to the second derivative.

Let us consider the operation of a smoothing filter whose input contains

both the control signal and its derivatives. In the future we shall call such
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L/r+ U_ o------4-0

Figure 6.4. Functional diagram of operational

smoothing filter with a first derivative.

filters operational. Figure 6.4 shows the schematic diagram of the simplest

operational filter with one smoothing stage. The transfer function of this

stage differs from the transfer function (6.1), because the free term in the

numerator is reduced by half. This is explained by the fact that the load re-

sistance of the filter is assumed to be infinitely large. The input signal of

an operational filter shown in figure 6.4 consists of a useful signal u , its
i

derivative and a noise signal u . The signal of the derivative must be intro-
n

duced with a coefficient of proportionality

T =rc.

The relation between the input signal and the output signal for the dia-

gram shown in figure 6.4 is determined by means of a differential equation

T d"2 d._ (6.17 )
a-t- + u2 = T _ +. Un + u].• dt

If the noise has a frequency w, in the steady state the voltage at the output

of the filter will be equal to

(6.18)
u2 = ut + y (7"_)_+ 1

Expression (6.18) shows that the control signal passes through this filter

without distortion (this is also true for transient states), while the noise is

(_( )2 + i) The diagram shown in figure 6.4 makes it pos-reduced by a factor Tw

sible to achieve the necessary smoothing, because the control signal is trans-

mitted to the output of the filter without additional delay, and there is nothing

to prevent an increase in the time constant of the filter. The principal dif-

ference between operational-smoothing filters and conventional filters is that

the former provide for the smoothing of noise irrespective of the useful signal

frequency, even when it is greater than the noise frequency. This is due to

the derivative of the control signal obtained by an independent detector. This

is, of course, not always feasible.

p
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Figure 6.5. Schematic diagram of operational

smoothing filter with a second derivative.

If, instead of the signal due to the first derivative, we have an inde-

pendent signal proportional to the second derivative of the control signal, we

may also obtain an intense attenuation of noise by using the filter shown in

figure 6.5. In the steady state the voltage at the output has the form

,_]r(3 T o,)2+ 1 (6.19)

]/(I__T2_2)2 + 9T2 to2

where T = rc and w is the noise frequency.

If the noise has a definite fixed band of frequencies, it can be attenuated

quite effectively by rejection filters. The filtration of the control signal,

i.e., the selection of a required band of frequencies, is usually achieved by

a resonant filter or a bandpass filter.

Section 6.3. Differentiation and Integration of Signals

In section 2.1 we presented two basic groups of methods used to analyze

automatic control systems: methods associated with the investigation of

transient processes in systems and frequency methods. As a result of this

division there are also two approaches to the analysis of devices used to ob-

tain signals which improve the stability and accuracy of automatic control sys-

tems. In the first case the analysis consists of establishing the methods and

accuracies for differentiating and integrating various signals to improve the

dynamic and static characteristics of the system. In the second case, similar

devices are analyzed by the frequency methods and, as shown in section 2.3, the

effect of these devices on the general frequency characteristics of the system

is considered. In the present section we shall develop both of these approaches.

i. Differentiation of Signals. If the control signals are realized in

the form of a dc current, their transformation is usually achieved by the use

of RC networks. Figure 6.6 shows the diagram of a differentiating network, in

which the output voltage is proportional to the input voltage and to its deriva-

tive. The differential equation which relates the output and input voltages has
the form
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T2-- tt2 =. k T1 dt J' (6.20)

where

T 1_ rlc;

T2 -_ kT 1;
(6.Zl)

to
k_--__._'..

f l -l- ?'2

It follows from equation (6.20) that, if T2 is equal to O, the output volt-

age is proportional to u I and dUl/dt , which is what is required. Since the ful-

fillment of the condition T = 0 is impossible, the term T du/dt is added to
2 2

the output voltage, causing a dynan:ic error in the scheme. The error will be

smaller for smaller values of k, which is usually selected in the range 0.i -

0.2. Due to this, the signal is attenuated during differentiation, which re-

quires an amplifier following the differentiating network. We shall show how

we can use a high gain dc amplifier to produce a scheme which differentiates

the signal with sufficient accuracy and without signal attenuation. The

schematic diagram of such an operational amplifier is shown in figura 6.7.

The transfer function of this scheme has the form

W(p) = ' k = I _ 1 (6.22)
l + kWf (p ) 1 Wf (p) "

wf (p) .

(subscript f = feedback).

Figure 6.6.

network.
Functional diagram of differentiating

When a circuit with phase shift and with a transfer function W (p) =
f

i

Tp +-_ is connected into the feedback loop, the scheme shown in figure 6.7

produces effective differentiation and simultaneously transmits the main sig-

nal. In this case the output signal is given by equation
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tl_ :- u_ + T d,,, t,6. Z3)
dt

Since gain k of the dc amplifier may be of the order of several thousands

or even several ten thousands, equation (6.23) may be realized with a high degree

of accuracy.

Figure 6.7.

amplifier.

Functional diagram of operational

In ac circuits it is also possible to obtain a derivative of the control

signal. Let us assume that the control signal modulates the amplitude of a def-

inite carrier frequency. As the sign of the contro_ signal varies_ the phase

of the carrier voltage jumps through 180 ° . The control signal may be written in

the following form

tt = A (t) sin %l, (6.24)

where _ is the carrier frequency; and A(t) is the control signal.
0

For a sufficiently accurate reproduction of the control system, the fre-

quency of this signal must be substantially less than the carrier frequency.

If we represent the control signal by the expression A(t) = A sin wt,

voltage u may be written in the form

÷I ]u = A sin :.,t sin O,o/--_ cos (% o,) t + cos (o,o + o,) l .
(6.25)

Expression (6.25) shows that the signal voltage is composed of two com-

ponents with different frequencies. The difference of frequencies (w0 - w) =

_i is known as the lower side band, while the sum (w0 + w) = _2 is known as

the upper side band.

The derivative of a control signal is achieved by means of a twin-T net-

work (fig. 6.8) tuned to the frequency wt (tune). The output frequency of the

T-network is fed to the input of the phase detector which detects the voltage

with a specific phase. At the tuning frequency w the circuit is closed, i.e.,
t
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the voltage at the output of the circuit is equal to O. Most frequently the
tuning frequency is selected equal to the carrier frequency. The complex trans-
fer function of the circuit shownin figure 6.8 maybe represented in the follow-
ing form

k_ (6.26)l -Fj

where

&=--;
_t

1

1 1

_c_ _c 2

_l_ll_ f

1 !
+

slz_- __cl o,c_+__; r = q -t- r2.
!"

• cI c2'If the network is symmetric, r I = r2, = i.e., _ = n = i/2; m = i,

the frequency to which the network is tuned is given by the expression wt =

1/rlc I. When _ = wt, we have _ = 1 and a transfer function W(j_) = 0, i.e.,

the network is blocked. According to equation (6.25) the signal at the input

Figure 6.8. Schematic diagram of

T network.

Figure 6.9. Twin-T network with

voltage divider.

of the above network consists of two components with frequencies _ = w - w
i 0

and _2 = WO + w, respectively. Substituting the values of _i and _ into ex-2

pression (6.25), we find that the transfer function for frequency _l has the
form

W;(J_2) ._ i°_,T, (6.27)
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where

T= 2
kwt

Due to the phase sensitive detector, the signal componentwith frequency
is not transmitted. Equation (6.27) showsthat the voltage at the output of

the schemeis a derivative of one of the componentinput voltages described by
equation (6.25). To obtain the sumof a signal and its derivative, it is nec-
essary to use a twin-T network with a voltage divider (fig. 6.9) and to follow
it with a phase sensitive detector. The transfer function of this network may
be written in the form

w (/cD = (1 + f:/F), (6.28)

where

k is the attenuation coefficient.
i

When k << i
i

T,_IT__ 1 2

kl kI k_ t

If the control signal is of a mechanical nature (e.g., rotation), the de-

rivative of this signal is obtained quite simply by means of a dc or ac tachom-

eter generator. The tachometer generator represents a dc or ac current gen-

erator with independent excitation. The schematic diagram of a dc tachometer

generator with the field winding is shown in figure 6.10. The excitation cur-

rent remains constant and the output voltage u picked up by the brushes of the

Figure 6.10. Schematic diagram of dc

tachometer generator; ie = independent excitation.

tachometer generator is proportional to the angular velocity of its shaft w
s

(shaft). When the direction of rotation changes, the polarity of the output

voltage also changes. The tachometer generator is attached to the shaft whose

velocity of rotation is to be measured. If we neglect the transient processes
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in the armature circuit of the tachometer generator, the voltage picked up by its
brushes is given by equation

u_k_s=k d_ (6.29)
dt '

where _ is the angular displacement of the tachometer generator. If we must

differentiate a slowly varying electric signal, we may use a low power servo-

system and transform it into the angular displacement of the servosystem shaft,

and then connect this shaft to a tachometer generator by means of a gear box.

2. Integration of Signals. Figure 6.11 shows the diagram of an integrating

circuit whose output voltage within certain limits of accuracy is proportional

to the sum of the input voltage and its integral. The relationship between the

output and input voltage of the circuit shown in figure 6.11 is determined by
the following differential equation

du., ,_ dtq7'2-dT: "2= 7"__ + Itl,
(6.30)

where

T 1 _ rlc and T2 -_ (g -[- r2) c.

Integrating (6.30 ) from 0 to t so that when t = 0 _ = u = O, we obtain
i 1

i ) i
where

_m fl

fl _ /'2

It follows from expression (6.31) that this network performs its functions

with an error proportional to the integral of the output quantity. This error

becomes smaller as T2 increases compared with T1. As in the case of the dif-

ferentiating network shown in figure 6.6, the error decreases as the coefficient
k decreases.

Figure 6.11. Schematic diagram of the

integrating network.
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By using the operational amplifier shown in figure 6.7 the error produced

by the integrating network may be reduced to an insignificant value. If a

capacity is placed in the feedback network of this amplifier, the voltage at

the output will be given, very accurately, by expression

, (6.32)
u2 = I uldl"

o

The operating range of an integrating amplifier is limited by the non-

linearity of its characteristics. If, in addition to the integral of the input

signal we must obtain the signal itself at the output, then the feedback net-

work of the amplifier must include a differentiating network, shown schematically

in figure 6.6.

The ac signal is integrated by an amplifier with a feedback loop contain-

ing a twin-T network (fig. 6.8). The equivalent complex transfer function of

such an operational amplifier may be represented with a high degree of accuracy

(6.33)_ (jc _)= __-.
j.O.iT

The integration of slowly varying signals is frequently accomplished by

means of an integrating dc or ac motor. The velocity of rotation of such

motors must be a linear function of the applied signal voltage over a wide range.

To reduce the zone of insensitivity of the integrator, the starting voltage of

the motor must be as low as possible. Figure 6.12 shows the schematic diagram

of an integrating dc motor. The motor with independent excitation rotates due

to signal voltage u which must be integrated. The shaft moves a reducing gear
i

and displaces the brush of the potentiometer which picks up output voltage u2,

approximately equal to the integral of input voltage u . The differential
i

equation of motion for the dc motor with independent excitation has the form

T d2a + d._._.__a_ kmttl,M dt2 dt
(6.34)

where TM is the electromechanical time constant; k (meter) is the amplifica-
m

tion factor of the motor, and _ is the angular displacement of the motor shaft.

If we neglect the time constant of the motor, which is permissible when

the variation in the signal voltage uI is slow, the angular displacement of

the motor shaft is given by the following expression (on the basis of equation

(6.34))
t

(6.35)
o
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Figure 6.12. Diagram of integrating dc motor.

Since the angular displacement of the motor shaft and the voltage are pro-

portional to each other, we finally have

I

u2 = k .I"_dt. (6.36)
0

The range of the integrator with the motor is limited by the angular dis-

placement of the br_sh in the output potentiometer.

To integrate the angular velocity of rotation of a missile with respect to

its center of gravity, integrating gyroscopes are used whose principle of opera-

tion was considered in Chapter 4. In this section we consider the physical and

mathematical principles of simple differentiating and integrating devices. In

actual systems, particularly those with dc control signals, the dynamic proper-

ties of these systems are improved by means of rather complex combinations of

simple networks. Such combinations of differentiating and integrating networks

are known as compensating circuits. A summary of diagrams and characteristics

of compensating networks is given in table 2.5.

Section 6.4. Summation of Signals

As pointed out in section 6.1, the signal which is transferred to the

actuator of control surfaces of a missile is usually the sum of signals from

various sensors in the control system. The control system network performing

the summation of several signals is called the summator. These signals are

added algebraically in the summator, and there shonld be a provision for vary-

ing the strength of each signal over a wide range. The types of summators de-

pend on the physical nature of the signals. In electric control systems, sum-

mation is accomplished by means of special circuits as well as by means of

magnetic amplifiers.

Figure 6.13 shows a scheme for summation which uses resistors. This

scheme makes it possible to add several voltages u ..., u , each of which is
i n

proportional to a corresponding signal.
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Figure 6.13. Schematic diagram showing summation

by means of resistors; subscript 1 = load.

The total voltage is picked up across the resistance r (load). Resistances

1

..., r are called input resistances. If we write a system of equations forr j
1 n

this scheme and solve it with respect to output voltage u, we find

u =._, k#_, (6.37)

where

ki "-_

1-I
i=,l J

(6.38)

By varying resistances r we can obtain the necessary coefficient in front
1

of each component. The disadvantage of this scheme is that a portion of signals

k i depends on all of the resistances of the scheme, equation (6.3). Therefore,

a variation in any of these resistances produces a variation in all coefficients

k.. This shortcoming may be eliminated in practice if all of the input resist-I

ances are selected so that they are greater than the load resistance. In this

n

case r 7. _l << 1 and expression (6.38) may be represented in the form
li=iri

k_ _ Z1-.
ri

n

We note that when condition r_<< 1 is satisfied there is a decrease in
L-I

all of the component signals, so that after a summator of this type we must use

•an amplifier, shown in figure 6.13. This scheme for adding electric signals is
suitable both for dc and ac currents.

(6.39)
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If a magnetic amplifier is present in the control system, it is rational to

use it as a summator of control signals. Depending on the number of signals

which must be added, the magnetic amplifier must contain the same number of con-

trol windings. The advantage of a magnetic amplifier consists of the possibility

of adding signals which are taken from sensors electrically coupled, because

the control windings are insulated from each other. The disadvantage of adding

signals by means of a magnetic amplifier is the presence of delay in the repro-

duction of the input signals. A moredetailed consideration of the magnetic

amplifier will be conducted in the following chapter.

In missile control systems it is sometimes necessary to add signals which

represent mechanical displacements of some elements of the sensors. Sensors for

the position and angular velocity of a missile (gyroscopes), the sensors of ve-

locity head, integrating motors, etc., produce output signals which have the

form of angular or linear displacement. To add such signals, various bridge
schemes are used.

As an example, figure 6.14 shows a bridge scheme with two bridges for

adding three signals. If more signals are to be added, the number of bridges

in the scheme must increase. The mechanical displacements Xl, x and x are2 3

transmitted to the brushes of three potentiometers r. The fourth potentiometer

with a middle point is used to null all schemes. In the given scheme, all of
the potentiometers are identical. The rheostats r are used to control the

i

bridge schemes. The displacement of the sliding arms of rheostats r in different
1

directions changes the proportion of the added signals. If the scheme does not

t_ r
----o-_ -- U ...... --_--

rr r r,

Figure 6.14. Schematic diagram of summation

by bridge schemes_ subscript o = output.

require this control during its exploitation, the proportion of signals may be

established by varying the lengths of potentiometers r, while the null point is

displaced by the mechanical movement of sliding arms with respect to their center

point and it is not necessary to have rheostats r . The output voltage of the
i

scheme is equal to the sum of voltages picked up by each of the sliding arms

with respect to the middle point of the lower potentiometer:
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u o =u_+it_+u3. (6.40)

Each of the added voltages in turn is determined by equation

_ ],Ul • _ 2air1

(6.41)

where x1 is the displacement of the sliding arm of the i-th potentiometer with

respect to the middle point; i is the total linear or angular length of the

potentiometer; _. is part of the rheostat resistance r introduced into the
1 1

scheme when the sliding arms are displaced opposite directions, and _ is part
i

of the rheostat resistance r introduced into the scheme when the sliding arms
i

are displaced in the same direction.

The coefficient _ is a substantially positive quantity, while coefficient
i

_i' depending on the direction of displacement of the sliding arms, may be posi-

tive or negative. Equation (6.41) shows that by varying the value of _. we can
l

vary the proportion of each signal within a wide range. The magnitude and sign

of the null displacement of the potentiometer depends on coefficient _ . This
i

displacement is determined by the voltage taken from the potentiometer when its

sliding arm is at the middle point (x = 0).
i

Section 6.5. Transformation of Coordinates

In some cases it is necessary to transform control signals obtained in one

system of coordinates into control signals corresponding to the position of the

missile in another system of coordinates. As an example we may consider missiles

guided by a radio beam. The control signal is obtained aboard the missile and

is determined by the position of the missile's center of gravity, with respect

to a system of coordinates fixed to the radar control point. When the missile

rotates with respect to the longitudinal axis, the control signals must vary as

functions of the tilt angle.

Figure 6.15 shows the mutual position of the coordinates: y , z are Earth

g g

axes, fixed with respect to the radar at the control point and YI' z are axesi

fixed with respect to the missile. The angle _ is the tilt angle of the missile.

The vector showing the mismatch in the center of gravity of the missile with

respect to the axis of the equisignal zone is shown by the corresponding voltage
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Figure 6.15 Projection of vector

in two coordinate systems.

Figure 6.16. Schematic of device

for transforming coordinates, i, 2,

3, and 4--brushes.

vector of control signal _. On the missile this voltage is measured as the pro-

jection of the voltage vector on the axis of the Earth coordinate system. To

control the missile_ it is necessary to transform them to system Yl' z . The1

relation between the projections of the vector in the two systems is given by

the following expression

lly_ = llyg COS "_ _ ll:g Sill "[, ] .

Iltz_ = llzg COS "_ -_ llyg sin "f.

(6.42)

To realize the transformation of signals given by expressions (6.42), we

can use sine-cosine potentiometers (fig. 6.16). Most frequently these poten-

tiometers have the form of ceramic _lates covered with a thin layer of metal.

To minimize brush friction, the metalized surface must be very smooth. To carry

out the transformation of signals in accordance with equation (6.42), it is nec-

essary to have two potentiometers, each with two brushes. The plates of the

potentiometers are fixed to the frame of lhe missile, while the brushes are

fixed to the frame axis of the position gyroscope. The signals u and u gen-

Yg zg

erated by the sensor aboard the missile are fed to the potentiometers shown in

figure 6.16. When the missile is rotated with respect to the longitudinal axis

by a tilt angle, the following signals are taken from the middle points of the
potentiometers and from each of the brushes

Uzl •

brush I--U cos y,
Yg

brush 2--U sin y,
Yg

brush 3--U cos y,
zg

brush 4--U sin y.
zg

By adding these signals we obtain, the transformed control signals UyI and
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CHAPTER 7- AMPLIFIERS AND ACTUATORS USED IN MISSILE

GUIDANCE SYSTEMS

Section 7.1. Magnetic Amplifiers

Due to their high reliability, magnetic amplifiers are widely used in mis-

sile guidance systems. The input signal is introduced into the magnetic ampli-

fier in the form of adc current, while the output amplified signal is obtained

as an ac current. At the present time three types of magnetic amplifiers are

used: differential, bridge and transformer.

Figure 7.1 shows the schematic of a differential amplifier. The signal is

fed to the control winding W which encompasses two cores. The same cores are
Y

wound with biasing windings W (bias). The biasing windings and the control
b

windings are connected in such a way that the magnitizing forces which they

produce with a signal of given palarity are added in one pair of ferromagnetic

cores and subtracted in the other pair. The output signal u is taken from the
2

load impedance Z , which is installed between the middle point of the feeding
i

transformer T and the ac current winding W of both pairs of cores. When uI = 0,

both pairs of cores of the amplifier are magnitized by the same amount, and the

inductance of the ac windings is also the same. The currents in these windings

are equal, and the voltage across the load impedance is equal to zero. When u1

0, the magnetization in one pair of the cores is increased, while in the sec-

ond pair it is decreased. A current flows through the load impedance. When

the sign of the input voltage uI changes, the phase of the output voltage u 2

shifts by 180 ° .

Figure 7.2 shows the variation in the current through the load impedance as

a function of the control current in a magnetic amplifier. The excitation cur-

rents are selected in such a way that the characteristics of the amplifier have

a maximum steepness. This steepness determines the current amplification factor

k i = dl2/dl I. In cases where the element of the control system which receives

a signal from the output of the magnetic amplifier must be fed with a dc current,

a scheme with rectification is used, as shown in figure 7.3. The disadvantage

of this scheme is the presence of additional resistances r (additional), which
a

decrease the power amplification. In the scheme of figure 7.3 these resistances
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Figure 7.1. Schematic diagram of a differential
amplifier.

Figure 7.2. Characteristic curve
of magnetic amplifier.

u,Ub V_

Figure 7.3. Schematic diagram of

differential magnetic amplifier with

dc current output.

are necessary, because when they are absent the rectifyingbridges shunt the load

resistance and only a small portion of the rectified current will flow in this

resistance. To eliminate the shortcoming in the scheme shown in figure 7.3,

which is associated with the presence of resistance r _ it is necessary that the
a

element powered by the amplifier have two identical and isolated windings. Then

the subtraction of output currents may be replaced by the subtraction of magnetic

fluxes in the power element, and it becomes unnecessary to have resistances r .
a

The differential scheme of a magnetic amplifier is most convenient for in-

troducing positive current feedback, which causes an increase in the gain. To

achieve feedback it is necessary to rectify the ac current in the load and trans-

mit it through the feedback winding W which is wound on the same core as the
f

control winding. This current produces an additional excitation of the core, so

that the same value of load current is obtained with a smaller control current.

Let us consider the dynamic properties of a magnetic amplifier. Since the

number of windings and consequently the inductance of the ac winding is small, we
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may assumethat the current at the output of the amplifier is proportional to the
control current and experiences practically no delay. However, due to the large
inductance of the control winding, the control current i always lags behind volt-

1
age u . The relationship between the control winding and the signal voltage is1
given by the equation

"L di l
Y. at + ,yi_= tl_, (7.1)

where Ly, ry

tively.

are the inductance and resistance of the control winding, respec-

The output current I is proportional to the current i
2 1

the output voltage is also proportional to i
1

tt 2_ l,.rl= kirlir

and, consequently,

(7.2)

If in equation (7.1) we substitute the value of the current i
1

we obtain

T da_
dt 21- it2 = kttt'

from (7.2),

(7.3)

where T = _.L_£is the time constant of the magnetic amplifier
r
Y

= ,ik_±.
ry

The solution of equation (7.3) for zero initial conditions and with u
- i

const has the form

(7.4)

Thus, when voltage jump u I appears at the input to the amplifier, output

voltage u varies according to the exponential law with time constant T. The
2

time constant may be expressed in terms of the power gain by equation

T = k____, ."4t (7.5)

where kW is the power gain; and f.is the frequency of the ac current in cps.
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Expression (7.5) shows that with a given power gain the time constant of a
magnetic amplifier and, consequently, the lag which it introduces in the trans-
mission of signals, maybe decreased only by increasing the frequency of the ac
current. A magnetic amplifier mayhave several control windings. The simplicity
of adding signals by placing several control windings is one of the basic advant-

ages of a magnetic amplifier compared with a vacuum tube amplifier.

Section 7.2. Vacuum Tube and Semiconductor Amplifiers

1. Vacuum Tube Amplifiers. Vacuum tube amplifiers are used in control

schemes as well as in the magnetic amplifiers. They must have an odd char-

acteristic for the relationship between the output voltage and the input volt-

age. This requirement is satisfied by the push-pull schemes. An example of

such a scheme is the dc bridge amplifier shown in figue 7.4. Tubes L and L
i 2

and the resistances r make up a bridge with the plate voltage U applied to one
a a

of the arms. The second arm has the load resistor r . If the parameters of the
1

tube are the same and the input voltage is equal to zero, the currents in the

tubes are equal, and the output voltage is also equal to zero. When an input

voltage appears, the grid of one tube is positive, while the grid of the other

tube becomes negative. The currents in the tubes will be different, the bridge

becomes unbalanced and a current appears in the load. When the polarity of the

input voltage is changed, the polarity of the output voltage also changes.

Balanced systems are characterized by improved stability in the drift of the

null point. The null drift of an amplifier occurs due to a variation in the

plate supply voltage, in the heater c_rrent, and in the tube parameters when the

temperature varies, etc. In a balanced scheme, the drift produced by external

factors, which have the same effect on both tubes, will be compensated because

the output voltage is determined as a difference of the plate currents of the

tubes. Because the characteristics of the tubes are not exactly the same, ex-

ternal factors will, nevertheless, produce some drift in the null point. A drift

in the null point of an amplifier is equivalent to a false signal at the input

of the amplifier and is a serious shortcoming of the dc amplifier. To decrease

it, it is possible to use negative feedback, although this decreases the gain of

the amplifier.

An example of an amplifier with substantial feedback is the cat_ode follower,

in which the load resistance is connected into the cathode circuit (fig. 7.5).

The voltage gain of a cathode follower is always less than unity, while the cur-

rent gain and the power gain may be quite large. Therefore, cathode followers

are used basically as stable power amplifiers. The characteristic of the cathode

follower shown in figure 7.5 is even. To obtain an odd characteristic, it is

necessary to use cathode followers in a balanced scheme.

To amplify an ac voltage, whose phase varies by 180 ° when the sign of the

control signal changes, phase sensitive ac tube amplifiers are used. A dc volt-

age is obtained at the output of the amplifier whose value is proportional to

the input ac signal and whose polarity is determined by the phase of th@ input

voltage.
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T .

T2 d

Figure 7.4. A dc bridge amplifier;

T = tube.

u, rI _i

Figure 7.5. Cathode follower.

Figure 7.6 shows the schematic of a phase sensitive amplifier. When there

is no input signal (uI = 0) the plate circuits of the tubes have pulsating cur-

rents whose average values are equal.

Currents through the tubes flow only when the plate voltage is positive.

Because the average values of the plate currents are equal, the value of the

voltage across the load resistance is equal to zero. The phases of the volt-

age on the grids of the tubes are opposite. If the phase of the input signal

at the grid of one tube coincides with the phase of the plate voltage, the grid

voltage of the other tube will be out of phase with the plate voltage. Therefore,

the average value of the current in the first tube will increase, while in the

second tube it will decrease, and a difference in the average values of plate

currents will appear. The output voltage will be proportional to this difference.

When the input voltage increases, the difference between the currents will in-

crease and consequently, the voltage at the output will also increase. The input

signal which is fed to a phase sensitive amplifier must be obtained in a scheme

which has the same power supply as the amplifier. Only in this case will there

be the necessary phase relationship between the grids and the plates of the tubes.

Figure 7.6. Phase sensitive a_li-

fief with plate supply in phase.

l-1

Figure 7.7. Phase sensitive ampli-

fier in which plates are powered

out-of-phase.

Figure 7.7 shows another diagram of a phase sensitive amplifier. Unlike

the scheme shown in figure 7.6, in this amplifier the phases of the voltages on

the grids of both tubes are the s_ne_ while the phases of the voltages on the

plates are opposite. The principle of operation of such an amplifier will be the

same as that shown in figure 7.6.
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The dynamic properties of vacuum tube amplifiers are very high and it can

be assumed that in a missile guidance system they introduce no phase shift.

2. Transistor Amplifiers. Transistors may be connected as low frequency

amplifiers in three different wa_s from the standpoint of input and output con-
nections. Figure 7.8 shows the ochematic of an amplifier with a common base.

Such amplifiers have an input impedance much less than the output impedance.

They have a current gain equal to unity, but a large voltage gain. The common

emitter circuit (fig. 7.9) is more advantageous because, in this case, the cur-

rent gain and the voltage gain are approximately equal and of substantial value.

The advantage of this scheme is the higher input impedance and the lower output

impedance. The scheme with a common collector (fig. 7.10) is analogous to a

cathode follower. The voltage amplification of the scheme is slightly less than

t _ ....

Figure 7.8. Amplifier

with common base.
Figure 7.9. Amplifier

with common emitter.
Figure 7.10. Amplifier

with common collector.

unity. The input impedance depends considerably on the resistance r in the
e

emitter circuit and may vary from hundreds of ohms to a fraction of an ohm.

The output _mpedance depends on the source impedance of the signal. The ad-

vantage of the scheme is that the gain depends little on the collector voltage
and on the variation in the parameters of the transistor.

The drift of the zero point for transistors is much greater than for vacuum

tubes. To stabilize the parameters of the amplifier, it is necessary to intro-

duce negative feedback, which decreases the gain. Figure 7.11 shows the dia-

gram of a bridge amplifier. The diagram of a phase sensitive amplifier using

transistors is shown in figure 7.12. The signals fed to the bases are out-of-

phase while the collectors are fed in-phase. The use of a rectifier prevents the

direct current from'passing through the transistor. When the input signal is

absent, the currents in the load resistances are equal to zero.

If the input voltage is not equal to zero, the voltage on the base of one

transistor is in phase with the supply voltage, while on the base of the other

transistor it is out-of-phase. In this case, a current pulse appears in the

circuit of the first collector, while the second collector does not conduct.

The average value of the current will be proportional to the input voltage.

When the phase of the input voltage changes by 180 o, the current will pass

through the second collector, which will cause a change in the polarity of the

output voltage.
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Figure 7.11. Bridge amplifier

using transistors.
Figure 7.12. Diagram of phase

sensitive amplifier using tran-

sistors.

Section 7.3. Actuators with Electric Motors

After the necessary transformation of the control signals and after their

power amplification, these signals will act on the actuators aboard the missile.

The actuators displace the control elements. Missiles usually utilize three

types of actuators: with electrical motors, hydraulic motors and pneumatic

motors. Recently, actuators have appeared which use powder gases. The present

section considers acutators of all types except those using powder gases.

The dc electric motors with independent excitation and two-phase asynchron-

ous motors are used to drive control surfaces. The application of an electric

motor is convenient from the standpoint of supplying it with energy, as well as

from the standpoint of exploiting a missile guidance system.

/23O

i. Actuator Using a dc Motor with Independent Excitation. The schematic

diagram of this actuator is shown in figure 7.13. The armature A of the motor

drives the control surface through a gear reduction box P. The excitation wind-

ing EW carries a dc current of magnitude I . The velocity of rotation is con-
e

trolled by varying the voltage U which is fed to the armature A of the motor

from some amplifier. The static characteristics of the motor are determined by

its external characteristics, i.e., the variation in the torque as a function of

angular velocity. A family of such characteristics for different values of voltage
applied to the armature are shown in figure 7.14. These characteristics do not

take into account the reaction of the armature and are therefore approximate.

Figure 7.13. Schematic diagram of actuator
with dc motor.
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Figure 7.14. External characteristics of

dc motor with independent excitation.

Let us consider the dynamic characteristics of a drive using a motor with

independent excitation. On the basis of Newton's Second Law, the equations of
motion for the armature of a motor can be written in the form

j d,o (7.6)

where J is the moment of inertia of the moving parts; MM (motor) is the torque

developed by the motor, and M is the load moment.
L

The basic component of the moment of inertia is the moment of inertia of

the armature, because the moment of inertia of the remaining moving parts is

reduced to the shaft of the motor _ith a coefficient inversely proportional to

the square of the transfer coefficient of the speed reducer_ which usually varies

from 200 to 1,000. The load moment is composed of the friction moment in the

reducer and of the damping and hinge moments of the control surface. To decrease

the hinge moment, the control surface is suspended in such a way that the aero-

dynamic pressure center, which acts on the control surface, is as close as pos-

sible to the axis of rotation. The damping moment and the friction moment are

usually less than the hinge moment. Proceeding from these considerations, we

shall neglect the load moment in equation (7.6) to make the presentation easier.

The rotating moment MM developed by the motor with independent excitation is

given by the expression

MM= k*IA' (7.7)

where @ is the magnetic flux of the excitation winding, and I A is the armature

current.

To clarify the variation in the armature current IA as a function of con-

trol voltage U and of the parameters of motion, we consider Kirchhoff's for the
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Second Law for the armatured circuit of the motor, which is written without
taking into account the small inductance of the armature

_rA+ E = U. (7.8)

where rA is the resistance of the armature winding, and E is the counter emf of

the armature due to its rotation in the magnetic field of the excitation winding.

The counter emf of the armature is given by the following equation

E _ c_¢. (7.9)

where w is the angular velocity of the armature, and c is a coefficient deter-

mined by the structural parameters of the motor.

Using equations (7.8) and (7.9) and substituting the values of IA and E

into equation (7.7) we obtain

MM_• k, D -- _kike_. (7.10)
rA

where

k_ = kO and k z = c¢_.

Equation (7.10) may be written in a different form

M_Mlv_ = K o),
LI_n

(7.11)

whe re M kiU=__ is the starting torque developed by the motor when the armature
k r

A

is at rest, and w - U

o
is the ideal idling speed, i.e., the velocity of the

motor when the load moments are absent.

Equation (7.11) is an analytical expression for the family of characteristics

shown in figure 7.14. Substituting the value of MMfrom equation (7.11) into

equation (7.6), setting ML = 0 and carrying out elementary transformations, we

find the equation of motion for the armature of the motor

d_ k.MU'TM-2-+ = (7.12)
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Jw 0
where T =_ is the time constant of the motor, and k - i

M M
is the gain of

the motor.

For a low power motion the time constant is a few one hundredths of a second.

The output quantity of the actuator is the angle of rotation of the control

surface. The relationship between the velocities of rotation of the armature and

of the control surface is obvious

• d_ (7.13)
•dt

where i is the transfer ratio of the speed reducer.

Substituting the value of w, given by expression (7.13) into equation (7.12),

we obtain a differential equation for the entire drive

r d8= kaY, (7.14)

where Td = TM is the time constant of the drive, and k d

drive.

=__ is the gain of the
i

On the basis of equation (7.14) we find the transfer function of the drive

II:'_ (#) - k d
(YLp + 1)p

(7.15)

(subscript d = drive).

2. An Actuator with a T_o-Phase Asynchronous Motor. T_o-phase asynchron-

ous motors of low power are used as drivers in control systems. Such a motor

incorporates a short-circuited rotor or a hollow rotor with thin walls. A

schematic diagram of an actuator With a two-phase motor is shown in figure 7.15.

The stator of the motor has two windings--the excitation winding and the con-

trol winding. The excitation winding is fed from a phase-shift circuit or

through a condensor c directly from the ac source. The control voltage is sup-

plied to the control winding W . The magnitude of this voltage and the sign of
Y

its phase vary in accordance with the magnitude and sign of the control signal.

Thus, the currents in the two windings are shifted in phase with respect to

each other by 90° . In addition to this, the axes of the windings in space are

also perpendicular. Under these conditions, the windings on the stator pro-

duce a rotating magnetic field. This field induces currents in the shorted

rotor or in the hollow rotor. The interaction of the field due to the induced

currents with the rotating field produces the driving torque. A change in the
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phase of the current in the control winding by 180 ° changes the direction of

rotation of the motor.

Figure 7.16 represents a family of external characteristics for a two-

phase motor for different values of the control voltage U . In a rather
Y

large range of angular velocities the variation in the moment and in the velocity

of rotation is linear as in the case of the dc motor.

Figure 7.15. Schematic diagram

of actuator with two-phase asyn-

chronous motor; subscript ex =

excitation.

O

Figure 7.16. External character-

istics of two-phase asynchronous
motor.

The equation for the actuator using the same assumptions will obviously

have the same form as equation (7.14) for a mechanism with adc motor.

Section 7.4. Hydraulic Actuators

Hydraulic actuators are used in the control systems of airplanes and mis-

siles. One of the advantages of a hydraulic system is the large force which

can be applied to a unit moving mass compared with that which can be applied by

means of an electric motor. The latter situation in turn provides for the

rapid operation of a hydraulic actuator. The constructions of hydraulic act-

uators are quite diverse, but the most common actuator is of the piston type

with a distribution value. Figure 7.17 shows the schematic diagram of a hy-

draulic actuator. The working fluid is pumped into the central channel of

a distribution box, and when the valve is displaced from its middle position,

it enters the respective cavity of the operating cylinder. The other cavity

of the operating cylinder becomes connected with the overflow tank. The re-

sulting pressure difference causes the piston to move and to rotate the con-

trol surface of the missile.

Let us derive the equation of motion for the piston. Let us assume _hat

the valve has been displaced from its neutral position to the right by a dis-

tance y. Then the fluid will flow through the slit into the cavity to the

right of the piston and will flow out of the cavity to the left of the piston.

The volumetric consumptions _ and Q2 of the fluid through the input and out-

put openings of the valve per unit time are given by expressions
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Figure 7.17. Schematic diagram of a hydraulic
actuator.

Q, = _DuI/14 ,TPo,

J

(7.16)

where _ is the consumption coefficient; b is the width of the window at the in-

and at the outputl; Pl and P2 are the fluid pressures at the input and theput

output; p is the fluid pressure in the cavities of the cylinder_ and y is the
0

displacement of the valve.

From the condition for the continuity of fluid flow we have

= Q2= a. (7._7)

Since _ is equal to Q2_ the right sides of equation (7.16) are equal

P! -- Po _-/4 -P2 or Po ---
p,-l-p_ (7.18)

Substituting the value of p into the first equation (7.16), we obtain
0

(7.19)

I
The shape of the valve window is assumed to be rectangular.

valve shoulder is equal to the width of the window.
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The volumetric consumption per unit time through the valve window is equal

to the volumetric consumption in the cavity of the operating cylinder when the

piston is displaced. This equality is expressed by the following obvious equa-

tion

Q = S e_.,
et . (7.20)

where S is the area of the piston, and x is the displacement of the piston.

By substituting into equation (7.20) the value of the consumption per unit

time from (7.19), we obtain the final expression for the characteristics of the

hydraulic actuator

" (7.az)" dt

(subscript h = hydraulic),

where kh__ _b_f_--p_. is the amplification factor of the hydraulic actuator.
1/_-S

The angular displacement of the control surface differs from the linear

displacement of the piston only by the transfer number i3 which depends on the

geometric relations in the transformation system of these motions. Therefore,

the equation for the entire hydraulic drive has the form

e6.
-_ = khdsY ,

(subscript hds = hydraulic driving system),

where

k kh
hds -:-

_k

Equation (7.22) is the analytic expression for the static characteristics

of a hydraulic drive. These characteristics are shown in figure 7.18 (broken

line), taking into account the limitation in the displacement of the valve due

to the width of the window. When the windows of the valve are completely open,

piston has maximum velocity. The actual characteristics have a "dead zone,"
because the collars of the valve are made somewhat wider than the windows. These

characteristics are shown in figure 7.18 by a solid line. A construction of

this type makes it difficult to adjust the valve when the dimensions of the

windows and of the collars are the same. In some cases the collars of the valve

are narrower than the windows. In this case the "dead zone" is absent, but
fluid is consumed all the time.

On the basis of equation (7.22) the transfer function of a hydraulic drive
has the form

(P)= • (7.23)
P
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We note that in deriving equation (7.22) we made the following assumption:

we did not take into account the inertia of the fluid and of all moving parts

connected to the piston, nor did we take into account the external forces

applied to the coupling rod--the hinge moment and the forces of friction.

If we take into account the inertia of the moving parts, then the piston

will not achieve its velocity instantaneously when the valve is displaced, as

stipulated by equation (7.22). The velocity will build up with some delay, and

the equation and the transfer function of the hydraulic drive will take on the

same form as the drive with an electric motor, equations (7.14) and (7.15).

However, the time constant Thd s for the hydraulic drive is very small and it

usually is neglected.

Section 7.5. Pneumatic Actuators

Pneumatic actuators are widely used in missile control systems. The use of

a compressed gas as a source of energy is convenient in the missile guidance sys-

tems, when the flight time to the target is short. The compressed gas is con-

tained in cylinders under pressure, and when the control system is turned on, it

is passed through a pressure regulator and used to actuate the control elements

of the missile.

There are two versions of a pneumatic actuator: one with distribution

valves and the other with a jet tube. The schematic diagram of a pneumatic

actuator, in which the flow of the gas is controlled by valves, is analogous to

the diagram of the hydraulic actuator_ shown in figure 7.17. The deflection y

of the valve produces a pressure difference on the piston and the latter is dis-

placed.

The schematic diagram of a pneumatic actuator with a jet tube is shown in

figure 7.19. When the jet tube is in the middle position, the pressure on both

sides of the operating cylinder is the same and it remains at rest. When the

end of the jet tube is displaced by an amount y, pressure equilibrium is dis-

turbed and the piston is placed into motion. Comparing these two constructions

of a pneumatic actuator, we note that the control of a jet tube requires less

force than the control of the valve, because there is a gap between the je_

tube and the receiving tubes and dry friction is absent. However, gas consump-

tion in the case of a jet tube is substantially greater than in the case of an

actuator with valves, because a large part of the gas flows out into the atmos-

phere during the entire operation of the actuator. In an actuator with a valve,

the gas consumption is limited by the volume ejected from the cylinder cavity

connected to the atmosphere by the displacement of the piston.

The processes which occur in pneumatic actuators are complicated by the

effect of gas compressibility, by the sharp variations in the gas flow through

small orifices when the pressure changes in the volumes which are connected by

these orifices, etc. Therefore, a detailed calculation of pneumatic actuators

is difficult. Below we present a simple equation of motion for a pneumatic

actuator, in spite of the structural differences between the two versions of
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Figure 7.18. Static characteristics

of hydraulic actuator.

• ' _

Figure 7.19. Schematic diagram of

pneumatic actuator.

the pneumatic actuator (figures 7.17 and 7.19), their motion may be described

by analogous equations. In deriving the differential equations for a pneumatic

actuator, the following assumptions are usually made:

(1)
stant;

the air pressure at the entrance to the valve or the jet tube is con-

(2) the coefficients of gas consumption are constant.

Under these assumptions, the equation for the moving parts of a pneumatic

actuator may be written

where m is the mass of the piston and the coupling rod, and also the reduced mass

of all moving parts attached to the coupling rod; x is the displacement of the

piston; S is the area of the piston; Ap is the pressure drop in the cavities of

the cylinders; kf is the coefficient characterizing the forces of viscous fric-

tion; and kI is the coefficient which characterizes the loading due to aero-

dynamic forces acting on the control surface (hinge moment).

The equation for the pressure differential at the piston has the form

where T is the time constant; k is the transfer constant; and k is a con-
I 2

stant which characterizes the variation in the specific weight of the gas when

the piston is displaced.

The time constant T and the transfer constant are functionsof pressure,

gas flow and the specific weight of the gas. In the calculations we take the
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average values of these parameters. If we eliminate the pressure drop Ap from

equations (7.24) and (7.25), we obtain an equation for a pneumatic actuator

J

+ k--.LX_--&y.

(7.26)

Equation (7.26) may be used to take into account the dynamic properties of

a pneumatic actuator incorporated into some closed loop system with high dynamic

properties. From the standpoint of using a pneumatic actuator for controlling

missiles when the processes take place rather slowly, if we consider the total

control loop, equation (7.26) may be simplified even further. In these simpli-

fications we neglect the first and last term in the left side of the equation.

The coefficient mT/S is small and may be set equal to zero. The loading pro-

duced by aerodynamic forces may also be made quite small by properly selecting

the position of the suspension axis for the control surface. Therefore, the co-

efficient kl/S may also be made quite small and assumed to be equal to zero.

As a result of these simplifications, expression (7.26) assumes the form

r =kdy ' (7.27)

(subscript d = driver)

m + kTT
where T - is the time constant of the driver; k -

d kT + k2S d

klS

k2S
is the

the amplification factor of the driver.

Since the angle of rotation of the control surface and the linear dis-

placement of the piston are associated by the transfer ratio i, we may use

equation (7.27) and write the equation of motion for the entire actuator

= k (7.28)
7"dsdt---7 d--t- ds y'

(subscript ds = driving system)

where Tds = T d is the time constant of the driving system; kds

amplification factor of the driving system.

= kd

i

is the

On the basis of equation (7.28) we obtain the transfer function for the

pneumatic drive

kd s

Wds_Pjr _ = (TdsP + l)p
(7.29)
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CHAPTER 8. MATKEMATICAL DESCRIPTION OF MOTION

Section 8.1. Systems of Coordinates

The equations of a missile are written for a specific system of coordinates.

In aerodynamics several coordinate systems are used and are selected in such a

way as to simplify the solution of a given problem. Below we determine the sys-

tem of coordinate axes used in aerodynamics and which we use in the present book.

i. The System of Earth Axes. The system of Earth axes x , y , z (fig. 8.1)
g g g

is rigidly fixed with respect to Earth. The y axis is directed vertically up,
g

while the x and z axes have an arbitrary position in the horizontal plane
g g

forming a right-hand system of coordinates. In analyzing the motion of the mis-

sile it is desirable to use the launching point as the center of coordinates and

to place the x axis in the vertical plane passing through this point.
g

point ""_ _" "

Figure 8.1. Earth coordinate axes.

• Y ' " . /

X Y p x_

Figure 8.2. Flow coordinate axes.

2. The System of Flow Axes. The origin of the system of flow (velocity)

axes is at the center of gravity of the moving body (missile). The x axis (drag

forces) coincides with the flight velocity direction (fig. 8.2). The y axis

(lift force) lies in the missile's plane of symmetry and is turned counter-

clockwise by an angle of 90 ° with respect to the x axis. The z axis (lateral

force) is perpendicular to the plane x or y and directed to the right (if we

are facing into the direction of flight), and forms a right hand coordinate sys-

tem with the x and y axes. (Figure 8.2 shows the components of the total aero-

dynamic force R which reacts on the missile in flight, along the coordinate axes:

the drag force X, the 'lift force (when the angle of attack is &) Y and a lateral

force (when the slip angle _ is positive) Z.
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3. The system of Body Axes. As the name implies, this coordinate system

is rigidly attached to the moving body (missile). The origin of this system is

at the center of gravity of the missile (fig. 8.3). The x axis (longitudinal
i

axis) lies in the missile's plane of symmetry and is directed from the tail to

the nose parallel to its axis or to the chord of its wing. The Yl axis (the

normml axis) lies in the missile's plane of symmetry and is rotated counter-

clockwise by an angle of 90 ° with respect to the x axis. The z axis (trans-
i i

verse axis) is perpendicular to the plane xioY I and is directed to the right

(if we face in the flight direction).

• " Ya

• zl;zz

Y;Y_

1

2 "

Figure 8. 3 . System of body axes. Figure 8.4. Angles between coordi-

nate systems using flow axes, semi-

fixed body axes and fixed body axes.

4. A System of Semifixed Body Axes. When aerodynamic coefficients are de-

termined experimentally, it is common to use a semifixed system of aerodynamic

axes. This is dictated by the construction of balances used to measure the aero-

dynamic coefficients in a wind tunnel. The semifixed body axes differ from the

flow axes because the x2 axis is directed along the projection of the velocity

in the missile's plane of symmetry. Thus, semifixed body axes may be obtained

from flow axes by rotation through the slip angle _ around the axis of the lift
force.

TABLE 8.1. COSINES OF ANGLES BETWEEN FARTHAND BODY

COORDINATE AXES.

I xl Yl [ zl

xg 1 ccs_ ccs_) -- cos 7 cos _'sin 0 -I- J cos T sin '_"+". + sin y sin + :]- sin 7 ¢cs @sin

• 1yg sin _ cos "_.cos _ --_ sin "fcos0

z_, -- sin _ ccso,
sin Tcos _ _-

+cos _ sin@ sin cos_ ccs_----sin _ sin _ sin

°
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TABLE8.2. COSINESOFANGLESBETWEENBODYANDFLOW
COORDINATEAXES.

X y " .Z ,,.

I 'xl cos a cos _ sin a -- cos a sin

v, --sinacos I cos., ! sinasin_

z, 0 cos_,

TABLE 8.3. COSINES OF ANGLES BETWEEN EARTH AND SEMI-

FIXED BODY COORDINATE AXES.

I
x2 Y2 I z2

I

0 cos _ --cos T cos _ sin 0 + I sin T sin 0 cos .._+
xg. cos q- sin _"sin _ " { t cos "I"sin _

_ I. SlnO COS_COS_ I --_i_'CGSO " ,

zg -- cos 0 sin
sin T cos @-t- [ Cos _"cos _ --

"k cos T sin _ sin 0 1 -- sin "I"sin _ sin 0 .-

TABLE 8.4. COSINES OF ANGLES BETWEEN BODY AND SEMI-

FIXED BODY COORDINATE AXES.

I• .. x2 Y2 .. z_

Figure 8.4 shows this transformation as well as the mutual position of the

axes and also the position of the body axes Xl, YI' Zl" The same figure shows

that the axes of the semifixed body system Y2 coincides with the axis of the lift

force y, while the z2 axis coincides with the transverse axis of the body sys-

tem zI. The angle xiOx2, i.e., the angle formed by the body axis x with thei
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y,\

9°_*_" x7

Figure 8.5. Angles between fixed body coordinate

system and Earth coordinate system.

projection of the velocity and the missile's plane of symmetry is the angle of

attack _. The angle zoz , or the angle formed by the velocity vector and the
i

missile's plane of symmetry, is the slip angle _. The positive directions of

angles _ and _ are also shown in figure 8.4. The positive angles of rotation of

system Xl, YI' Zl with respect to the system x, y, z, are obtained from the gen-

eral rule for right-hand coordinate systems.

Figure 8.5 shows the angles formed between the body coordinate system and

the Earth coordinate system. For convenience, the origins of both coordinate

systems coincide. The angle @ formed by the x axis with the horizontal plane
i

x oz is called the pitch angle. The angle Y formed by the projection of the
g g

x I axis on the horizontal plane x oz with the x axis is called the angle of
g g g

yaw. The angle y formed by the zI axis in the horizontal plane x oz is called
g g

the tilt angle. The positive directions of these angles are given in figure 8.5.

Tables 8.1 - 8.4 show the direction cosines for transforming from one sys-
tem of coordinates to another.

Section 8.2. General Equations of Motion of a Missile Assuming

that it is a Rigid Body

The general formulation of the problem concerning the motion of a missile,

even when the latter is not guided, is very complex. To simplify this problem

a whole series of assumptions has to be made. In the first of these assumptions

the elastic deformations of the missile are neglected, so that the latter can be

considered a rigid body.

The motion of a rigid body of variable mass may be determined by using the

laws of momentum and of the moments of momentum for the center of gravity of the
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body. The law of momentumin this case has the form

(8.1)
n__ = R "1- P,

dt

where m is the mass of the body which varies due to the combustion of the fuel;

is the velocity of the center of gravity; I R is the resultant of the external

forces acting on the center of gravity. _ = U dm/dt is the resultant of the

reactive forces applied at the center of gravity, and ff is the relative velocity

of theadded(or emoved)mass(massofthefuel).

form
For bodies of variable massj the law of the moments of momentum has the

d*g
dt = '_ + N, (8.2)

where K is the moment of momentum in relative motion with respect to the center

of gravity of the body; M is the moment of external forces with respect to the

center of inertia, and _ is the moment of reactive forces with respect to the
center of inertia.

The asterisk in the derivative indicates that the moment of momentum of a

body may be considered constant during differentiation.

Equations (8.1) and (8.2) are valid for a fixed system of coordinates. The

concept of a fixed coordinate system is conditional, because it is always nec-

essary to specify another coordinate system with respect to which the system used

in a given problem is fixed. For most of the problems encountered in this book

the fixed coordinate system will be the Earth coordinate system. In problems

where the motion of the Earth must be taken into account when considering the

flight of the missile, this will be specified.

The forces and moments which occur in the right sides of equations (8.1) and

(8.2) can be expressed most conveniently by using a system of coordinates fixed

with respect to the missile, rather than with respect to Earth. Therefore_ it

becomes necessary to transform equaoions (8.1) and (8.2) to one of these systems.

The transformation from a fixed system of coordinates to a moving system of

coordinates is based on the following general lemma

d_ d_

dl -- dt
+ [7;_1.'

(8.3)

iStrictly speaking, V is not the velocity of the center of gravity, but is the

transport velocity of that point in the body through which the center of gravity

passes at a given instant of time. The center of gravity does not occupy a fixed

position in the body. However, the relative velocity of the center of gravity in

a body may be neglected compared with the transport velocity of the body (of the

missile).
i
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where d_/dt is the derivative of the vector _ in the fixed system of coordinates;
d_/dt is the derivative of the vector _ in the moving system of coordinates, and
w is the angular velocity of the moving system with respect to the fixed system.

On the basis of (8.3) it is possible to transform from the Earth (fixed)
axes to flow axes, to fixed body axes and to semifixed body axes. To obtain the
equations of motion of the missile in the form generally accepted in aerody-
namics, it is desirable to write equations (8.1) and (8.2) in a semifixed body
system of coordinates. Applying (8.3) to these equations, we find

-- = ,1_-- + m [,_'P] --- R -" P,m dt dt

(8.5)
- + I_'_, l = ._.1+ ,\,,

dt dl

where _' is the angular velocity of the semifixed system of coordinates with re-

spect to the Earth system of coordinates.

If we project the vector equations (8.4) and (8.5) on the axes of the semi-

fixed system, we obtain two systems of equations

(8.6)

(8.7)

Equations (8.6) take into account that in the semifixed system of coor-

dinates the Y2 axis is perpendicular to the missile flight velocity V. There-

fore, the projection of the velocity on this axis (Vy2) is identically equal to
zero.

The projection of the moment of momentum on the axes of the semifixed sys-

tem, which enter into equations (8.7), for a body of variable mass are deter-

mined by equations
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Kx_ : J,_.'._2 _ J.ry_-_°y2,

.Ky2=: Jy,.(dy, -- Jxy_(O._.2,

(8.8)

where Jx2' J ' Jz2 are the axial moments of inertia of the missile in this semi-y2

fixed system of coordinates; J is the centrifugal moment of inertia of the mis-
xy2

" _jectl_.s of the angular velocity of the missilesile, and Wx2 , _y2' _z2 are the _ "_

on the axes of the semifixed system.

The derivation of equation (8.8) takes into account the fact that the missile

has a plane of symmetry and, therefore, the centrifugal moments of inertia Jyz2

and J are equal to zero. In addition, we should point out that the angular
zx2

velocity of the missile _ is different from the angular velocity of the semifixed
system _' , because this system is not rigidly fixed with the missile and may move

with respect to the missile (together with the projection of the velocity vector

on the plane of symmetry). It is also obvious that the moments of inertia in equa-

tions(8.8) are not constant quantities. The variation in these moments of inertia

is due both to the variation in the mass of the missile caused by fuel consumption

and due to the mobility of the semifixed axes with respect to the missile.

Substituting into equation (8.7) the values for the projections of the moment

of momentum on the axes of semifixed system (8.8), and noting that the derivatives

contain the asterisk, we obtain

(8.9)

The asterisk in the derivatives for the projections of the angular veloci-

ties on the axes of the semifixed system indicates that these derivatives are com-

puted by assuming that the axes x2, Y2' z2 are fixed with respect to the missile.

It is necessary to point out that the projections of the angular velocity of

the missile and of the semifixed system of coordinates on the axes x and y of
2 2

this system are equal to each other. This is explained by the fact that system

x2' Y2' z may rotate in the missile only with respect to the z axis. 0nly the2 , 2
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projections with respect to this axis (Wz2and w_2) may differ from each other in

principle. Taking this into account, we rewrite equations (8.6) and (8.9) in a
simpler form

dVn I!

!

1dVz2

m d---_--m°'y2V_ = R_2 + Pz2, I

d x2 dt -- J'Y2'ey2_°z2 -}- "_2f°z2'%'2 -'_J' y2 t°x2U'z2 -- ---_1 _- 1_¢,t2 "_-N x2'

( 1d "u_ y 2 , d*'a x2

IY2 dt --Jzgt°x2'°z2 -t-!x2°)x2°)z2 -- "[xy2 (°y2t°_2 "-- dt / = M'Y2-[- Ny2'

(8.1o)

(8.11)

To determine the linear coordinates of the missile's center of gravity in

the fixed system, and also to determine the semifixed angular coordinates in this

system, it is necessary to write six more kinematic equations. From table 8.3_

the relation between the projections of flight velocity in the fixed and semi-

fixed systems has the form

dxg

dt -- Vn cos 0 cos ,._+ V_2(sin "tsin 0 cos @ + ccs "_s_n)D,

dyg
dt -- Vx2 sin 0 -- Vz2 sin "_ccs 0, .

s

dzg

dt -- -- Vx2 cos 0 sin q + Vz2(ccs I cos _ -- sin Xsin 0 sin +).

(8.12)

Figure 8.6 shows the component3 of the angiular velocity vector in the semi-

fixed coordinate system N' as products of Euler angles. From geometric considera-

tions we obtain the kinematic equations which relate to these components

d i, ,
dt -- %2 "" '_y2tg 0 ccs "I+ %2 tg 0sin I.

• .

d9 _ _'y2cos "_-- %2 s,n_ (8.13)
dt cos0

e

dO o_y2 shl "_-[- _)z2 COS '_.
dt .
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Figure 8.6.

Z_

__t" _'2

Geometric relations for angular velocities.

To these equations we must add the following kinematic relationships used

below

d
0 = 0 -i- _; _i .... v" sin _ -I- ,',_ ccs "_. (8.14)

The system of equations which contains equations (8.10) - (8.14) is a com-

plete system describing the motion of the missile. In principle it may be solved

if we determine the forces and moments acting on the missile during flight.

Section 8. 3. Reduction of Generation Equations of Motion of a

Missile to a Simpler Form

The system of equations (8.10) (8.14) obtained in the preceding section

is a complex nonlinear system with variable coefficients which does not have a

general solution. These equations are also complicated by the fact that the

forces and moments contained on the right side of equations (8.10) and (8.11)

are, in turn, nonlinear functions of missile motion parameters (functions of the

angular and linear coordinates of the missile and of the derivatives of these

coordinates). Although the system of equations (8.10) - (8.14) may be solved

for specific numerical values of the missile parameters by means of computers,

this approach is not considered suitable in investigating the motion of guided

missiles and in selecting control parameters. A solution using specific values

of control system parameters does not make it possible to select the optimum

values of these parameters, since it does not establish a clear relationship be-

tween these parameters and the motion of the missile. Therefore, the most

rational method to obtain simple, although approximate, analytical expressions

for the motion of the missile involves a simplification of the problem. Follow-

ing the accepted practice in the aerodynamics of airplanes_ we simplify the

problem by separating the true motion of the missile into a longitudinal and

lateral component. The longitudinal motion refers to the motion of the center
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of gravity in the vertical plane x oy and a rotation around axis z . The
g g 2

lateral motion covers the motion of the center of gravity in the incline plane

x2OZgand the rotation with respect to axes x2 and Y2"

The separation of missile motion into longitudinal and lateral components
is based on the assumption that the parameters determining longitudinal motion,

'),[d.r_ d)_ V_o, 0 O, o_m, _0z2 are considered to be constants in the equations for_t-' d-7.... ,

_
lateral motion, while the parameters which determine lateral motion, .tdl V_o,

7,_i'.0)x_.0_:j2),are considered to be constant in the equations for the longitu-

dinal motion. As a result of this assumption, the general system of equations

(8.10) - (8.14) is divided into two systems describing the isolated longitudinal

and lateral motions. We note that when the missile moves strictly in a vertical

plane, this approach is not an approximation, because in this case the parameters

of lateral motion are indeed constant and equal to zero. For the lateral motion

of the missile, the approach always introduces a certain error, because during

this motion the parameters of longitudinal motion vary somewhat, which is not

taken into account by the isolated equations of lateral motion. The error will

be smaller if the variation in the parameters of longitudinal motion is smaller

during the time when the lateral motion of the missile is investigated.

However 3 even after motion has been separated into longitudinal and lateral

components, the equations are still very complex. There are two basic methods

for a further simplification of the problem. The first method_ known as the

method of linearization, or the method of small perturbations, consists of the

following. The motion of the missile is divided into perturbed motion and un-

perturbed motion. The unperturbed motion may cover any portion of the flight of

interest to us. Let us assume that a missile whose motion was unperturbed is

subject to perturbations (deflection of the control surfaces, change in engine

thrust, gust of wind). Perturbed motion is any motion which is obtained after

the unperturbed motion changes due to a perturbation. We assume that the de-

viations in the parameters of perturbed motion from their values during un-

perturbed motion is small. We expand all of the nonlinear functions which enter

in the initial nonlinear equations in a power series of the perturbations and

drop all terms which are infinitesimals of a higher order than one. The equa-

tions obtained in this manner are known as equations of the first approximation

and are linear. In the general case_ some of the coefficients of these equa-

tions may be functions of time.

This method of linearization is of practical significance when the un-

perturbed state consists of rectilinear and uniform flight. In this case_

linearization is very simple, and it is for this region of flight that the

method will be used in the present book. It constitutes a natural mathematical

approach to the analysis of missile motion involving rectilinear and uniform

flight. There are many missiles o!' this type whose sustainer engine operates

during the entire flight trajectory or during a large portion of it. There is_

however, a large class of missiles which does not have a region of constant

flight velocity. This class includes missiles which have only booster engines
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or sustainer engines which operate over a smaller portion of the trajectory.

Also, the accelerated motion of a missile after launching cannot be described

by means of iinearized equations for the same reason--in this case the unper-

turbed operation in the form of rectilinear and uniform motion is absent.

2ram

If the initial equations of v_:_tion of the missile cannot be liiearized_

then a second method is used to simplify them, known as the method of grouping.

This method is not as strict mathematically as the method of linearization but_

nevertheless, produces satisfactorT- results in many cases. To explain the method

of grouping, we note that the motion of the missile is described by parameters,

including those which vary rapidly or slowly as functions of time. The raoidiy

varying functions may include the motion of the missile with respect to its center

of gravity, while the slowly varying functions include the motion of the center

of gravity of the missile. The idea of thTs method is to group the equations of

motion in such a way and simplify them so that the group for the slowly varying

functions may be integrated separately from the group for the rapidly varying

functions. The results obtained by integrating the equations for slowly varying

functions of time are substituted into the group of equations for rapid motion,

which, as a rule, change from nonlinear equations to linear equations with vari-
able coefficients.

In this section we present only the method of linearizing the equations of

longitudinal and lateral motion. The method of grouping will be covered in sub-

sequent sections.

To !inearize the nonlinear equations (8.10) - (8.14), we take the region of

rectilinear and uniform flight as the unperturbed state, when the sum of the

forces and moments acting on the missile is equal to zero. We assume also that

the x axis of the Earth coordinate system in this case coincides with the flight
g

direction of the missile. In this case, the parameters, which determine the

motion of the missile in the unperturbed state, have the following values

[ dxg _ { dg_ \
(V,.,)o= V,; (V_2)o= O; _-_-Jo = V, cos o,; _-_i-Jo =V, sm o,;

'% _ =
--,-Z-jo o; (o,.,.,),,= (o,y.4o= (°WJo---(',_)o = o;

('_)o--- (x)o= o; (_-,)o= _,; (O)o= o,.

If we substitute these parameters into the system of equations (8.10) -

(8.14), the latter transform into algebraic equations. From these equations

we can determine the numerical values of the parameters for unperturbed flight.

Now let us assign small increments to all of the parameters, which shall be

designated by the sign A in the case when the value of the parameter during the

unperturbed state is different from zero. However, if it is equal to zero, then

the deviation will be designated by the same symbol as the parameter. Substituting
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the values of the parameters with increments into equations (8.10) - (8.14) and
assuming that there is no coupling between the longitudinal and lateral motions
of the missile, we obtain two systems of equations for the increments (first
approximation).

The system of equations for longitudinal motion is

m d'_Vd_.....__= At_'r2 "+ AP_2; dAXgdt= (Ve+AV) cos Oc--V e sin OeAO;

ll,Ve_ = A/_y 2 ._. Apy2; dAyg __ (V t ___AV) Sill Oe +Vecos 0eA0;dt

do:2
m

J_2 t,M_2 + aN,2; d_------L= ,,',2;
dt dt

o

_,_ = _0 + a_.

(8.l_)

i
The system of equations for lateral motion is

dzg = Ira av= tn_W, = _R_2+ _Pz2; T --V,'_ + V,_;"dr Ido,.yo __ d't
Jx2 d°<_s Jxy2 - '_mx2 -Jl- A_x2; _ = ox2;

dt - dt dt

• !•/y2 _-_d_y2 0rxy 2 d°'Xedt -- A.My2 + ANyT; d'_dt = °Jy2"

(8.16)

Due to the separation of motion into longitudinal and lateral components,

the use of a semifixed system of coordinates as an independent system loses its

meaning. For some components of motion of the missile the semifixed system has

become identical to the flow system, for others it has become identical to the

fixed system. Indeed, the x and y axes of the flow system and the x2 and Y2

axes of the semifixed system, which determine the longitudinal motion of the mis-

sile's center of gravity, differ only in that the x axis is situated along the

velocity vector, while the x2 axis is along the projection of the velocity vector

on the missile's plane of symmetry. Since the effect of lateral parameters on

longitudinal motion is not taken into account, it was assumed in the investiga-

tion of this motion that the slip angle (parameter of lateral motion) is equal

to zero. in this case, the velocity vector is situated in the plane of symmetry

and coincides with its projection on this plane. Consequently, for longitudinal

motion the x2 and Y2 axes of the semifixed system are identical to the x and y

axes of the flow system. We shall assume that the first two equations of system

(8.15) are in the system of flow axes.

lln equation (8.16) we have dropped the asterisk for convenience.
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The third equation of (8.15) and the first three equations of (8.16) turn
out to be in the fixed system of coordinates. This is obvious with respect to
the third equation of system (8.15), because the z and z axes coincide in

i 2
the body of the missile (fig. 8.4). As far as equation (8..16) are concerned,

whenwe consider only lateral motion, the x2, Y2' z2 axes becomefixed with

respect to the missile. The mobility of the semifixed system is due only to
the variation in the angle of attack of the missile. Whenwe consider isolated
lateral motion, the angle of attack does not enter into this system of equations
as a parameter of longitudinal motion. Therefore, the semifixed axes change
from moving axes to stationary axes, i.e., axes fixed with respect to the mis-
sile. Now, the difference in the Xl_ _rl, Zl axes and the x2, y2_ z2 axes con-

sists only of the presence of the ar_le of attack between the x and x axes
i 2

and between Yl and Y2 axes. If we take into account this angle, we can replace

the semifixed axes x2, Y2' z for the lateral motion by fixed axes x , y , z ,2 i i !
by changing, respectively, the designations for the momentsof inertia and the
angular velocities of the missile. Weshall also _eplace the z axis by the z

2 i
axis in the sameway in the first equation of system (8.16). In doing this we
note that, due to the rotation of the axes by an angle _ , a term mV w will

e yl xl
appear in the first equation of (8.16), which, in the semifixed system of coordi-
nates, was equal to zero due to the identity V _ O. The componentsof the re-

y2

locity along the Yl and Zl axes are conveniently taken into account in terms of

the angles of attack and angle of slip together with equations

V_,t= -- V, cos ,3<sin% _ -- V,%, "

V,_ - V, sin _ ._ V<_.

To simplify the equations we shall also neglect the centrifugal moment J ,
xy

which usually has an insignificant value. As a result of above transformations,

the system of equations (8.15) and (8.16) may be written in a slightly different

form. The system of equations for longitudinal motion is

ct_., _ -- (V¢ -r- A V) cos O, -- V_ sin O,AO;in-- --_ ARx -}- AP.,.; dA.v_
dl dl

I/lV¢ --da-_O_---ARy q- AP,.;
dl

day<, _--=(V, -t- AV) sin O, -t- V< cos O<AO;
dl

drz dw___.(_z_ AA//z _]_ AiVz; dA._____== o_.,
dl dl "

AO=AO + Aa. ..

(8.17)
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The system of equations for lateral motion is

mV, d_
dt

. dz_
-- mV,%%,.mV,%---_R, + aP,; -gf = V, (_ -- ._);

d x do.____,= A M x + 'AN _,; d-A--_= %,;
. dt dt

d,,,y d,_
dy dt -- 'AMy + AIt_; ___1%= O_y.dt

(8.18)

Now the subscripts of the corresponding parameters merely indicate the

selection of a specific axis in a given system. They do not show the selection

of any particular system, because this problem was previously solved and it is

known for each of equations (8.17) and (8.18) in which coordinate system it was

constructed.

Let us analyze the right sides of equations for the'projections of force

and moments, which enter into systems (8.17) and (8.18), in order to obtain

the final form of these equations.

Section 8.4. Equations for the Longitudinal Motion of the Missile

Obtained by the Method of Linearization and their

Analysis

To obtain equations for longitudinal motion, it is necessary to find an

analytical expression for the increments of forces and moments which enter into

the system of equations (8.17).

Figure 8.7 shows the forces and moments which act on a missile during longi-

tudinal motion.

These forces and moments are nonlinear functions of a series of arguments

X = X O, V, M, ;_);

Y = Y O, V,/U, ,_);

P = P(6tc , M,I_, 7");

6el da d:l )A'I_ =- M. , _, _ -- V, M, p
• dt ' dt ' '

where M = V /_ (_ is the velocity of sound at the flight altitude); p is the
e e e

air density; 6 is the angle of rotation of the thrust control member; p is air
tc

pressure; T is the absolute air temperature, and 6el is the deflection angle of

the elevator.
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Figure 8.7. Forces and moments which act on missile

undergoing longitudinal motion, x, y--axes of flow

system of coordinates; _--pitch angle of missile; C--

slope of missile's trajectory; _--angie of attack as-

suming that longitudinal axis and chord of wing coin-

cide in direction. P--thrust developed by engine; we

assume that it passes through center of gravity of mis-

sile; therefore, moment of reactive forces N is identi-

cally equal to zero; X--drag whose direction is opposite

to that of the velocity vector; Y--lift force perpendic-

ular to velocity vector; G--weight of missile; M --mo-
z

ment of aerodynamic forces with respect to transverse

axis zI .

The projections of the forces on the x and y axes of the flow system are

determined from figure 8.7 by means of the following expressions

R_ + P_ = . X -- 0 sin _ -I-, 6 cos _;

Ry + Px =Y-- G cos 0 4- P sins.

(8.19)

(8.20)

The initial unperturbed state of motion in the vertical plane may be ob-

tained if all forces and moments ac_ing on the missile are equal to zero. Con-

sequently, for this state the following system of equations is valid

-- X¢ -- G sin 0¢ -1- P, cos % = O, .]

Y, --- G cos O_ 4_ p_ sin % = O, /
iv/, .(t,el %,O,O,V,, o,)= O,

_, = O_-l- %.

(8.2l)

In the system of equations(8.21) two quantities, the thrust P and the
e

angle of deflection of the elevator 6el , depend on the position of the actuators
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which control the engine and the elevator. Therefore, these two quantities are

contained in the equations of motions as functions of time. These functions

must either be known or definitely related to the flight parameters. These

relations characterize the operation of the missile control system. In equa-

tions(8.21), which describe the unperturbed state, these quantities must be
constant and must be known.

If the thrust and the deflection angle of the control surface are _no_m,

in the system of equations (8.21) there will be four remaining unknown flight

I
parameters, V , e , _ and G , which characterize the unperturbed motion and

e e e e

which can be determined in principle by solving this system of equations.

We shall now assign small increments to these psrameters and to the flight

altitude and expand the nonlinear functions X, Y_ P and M in a power series of
z

these increments. If we limit ourselves to the linear approximation and take

into account equation (8.21), we o_ .ain the following expressions for the in-

crements in the forces and moments &uring longitudinal motion.

aR.+ _P. = -- XvAv --X'_AM - X_Ii= -- XPpy_ye

O cos 0,-_0. + P'_ cos %,_M -- P_ sin o._ q- P_ cos %pY±yg + '

+ pr Cos %TYAyg + P_ cos % A_tc,

ARy + aPy =.yv._V + Y,'_,XM_- y<_ + ytoyAyg -i-G sinO_AO +

_{_p.x_ SiIl %AA'I -_- Pe COS _.eA_ + PP sin %pYAgg -_-

+ pr sin %T._'kyg + P_ sin %_Stc,

• at -- --" + mY v +

/ ,wg"

(8.22)

The various terms with superscripts designate the partial derivatives of

these quantities with respect to the parameter given by _he respective super-

V
script. For example, X = _X/_V, X_ = _X/_ etc.

i

If we consider the horizontal flight of the missile or if we do not take into

account the variation in the air density 9 as a function of altitude; if we

take into account this variation, then, in these equations we must add ex-

pressions which relate flight altitude yg to angle 8 and to flight velocitye

Ve, and also the air density as a function of altitude; we shall do this below.
i
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Let us consider briefly the method of determining individual components of

forces and moments which enter into these expressions. The variation in the drag

X, in the lift force Y and in the moment M z as a function of velocity V and air

density p follows directly from these equations:

X --- c_.S PV--_, ( 8.23 )
2

y = cys (8.24)
2

A4 z _ mzSb a PV2
• (8.25)

where c = c (M,_) is the drag coefficient; c = c (M, _) is the coefficient of
x x y y

lift; mz = mz (6el' _' d_/dt, d_/dt, M) is the coefficient of moment Mz; S is the

area of the missile's wings or some other area (e.g., the area of the mid-frame

of the missile), and bA is the average aerodynamic chord.

Thus, the partial derivatives of the forces and of the moment with respect

to V and p may be obtained indirectly by differentiating expressions (8.23) -

V 2

(8.25). We note that the partial derivatives Mz = mzeSbAPeVe and MPz = mzeSbA __e
2

are equal to zero because the moment coefficient m is equal to zero. This co-
ze

efficient corresponds to unperturbed rectilinear flight for which M = O. The
z

partial derivatives of the forces and moments with respect to the angle of

attack _ and the M (Mach) number are determined graphically from the character-

istics of the missile, which are shown approximately in figures 8.8, 8.9 and

8.10. The other necessary relationships for the missiie--m = m (6 d_/dt,
z z el'

d_/dt) and for the engine P = P(6tcM , p, T) are also presented graphically or

analytically. The derivatives with respect to the density p, the pressure p and

the absolute air temperature T are determined from data on the variation in atmo-

spheric parameters with altitude as shown in table 8.5. The reference quantities

in these tables are as follows:

288°C.

PO : 1.22 554 kg x m -3, PO = 760 mm Hg, TO

as functionsand P/PoAs an illustration, figure 8.11 shows the graphs P/Po

of altitude constructed on the basis of data given in table 8.5.
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Figure 8.8. Variation in drag co-

efficient as function of Mach number

M.

g

Figure 8.9. Variation in lift co-

efficient as function of Mach

number M.

1 2 E -z_ 5,_
"c_ =Z °"

Figure 8.10. Variation in moment coefficient m

as function of M. z

Let us clarify the physical meaning of individual incremental components

of the moment AM . The moment M6A6 is the control moment produced by the
z z el

elevator of the missile. The moment M_A_ is called the static stability moment.
z

This moment is produced because the aerodynamic focus of the missile does not

coincide with its center of gravity. It determines the static stability, i.e.,

stability with respect to the perturbation of the angle of attack which is con-

sidered without the other components of moment M during perturbed motion. If
z

the aerodynamic force is applied behind the center of gravity, M_ < 0 in the
z

missile is statically stable. As the angle of attack is increased, the aerody-

namic force also increases and produces a moment which decreases the angle of

attack. When the angle of attack decreases, the picture is reversed. If the

aerodynamic force is applied in frcnt of the center of gravity, the missile will

be statically unstable with respec_ to the angle of attack. Finally, when the

point of application of the aerodynamic force coincides with the center of grav-

ity, the missile is statically neutral with respect to changes in the angle of

243



I Y 10 50 100y_._M

s_ _ , , , ttff --
--r-_t-! t -- -- --

5 t ,
hq- - ' _-;..... , - z1zr _.

r ,_ttt---,--t- rfH

Figure 8.11. Variation in air pressure and air

density as function of altitude.

attack. Under actual conditions, the variation in the angle of attack always pro-

duces a moment MzA_ , and also a series of other moments which also affect the flight

stability of the missile, but to a lesser degree than the moment _zA_. Therefore,

the moment of static stability is only one of the factors affecting the stability

and dynamic properties of the missile.

TABLE 8.5. VARIATION IN ATMOSPKERIC PARAMETERS AS A

FUNCTION OF ALTITUDE I

Altitude, _£

km Po
P_

0
1
2
5

10
15
20
25
30.
35
40
50

|0O

1.0
0.885
0.78
0.527
0,258
0. I18
0.543- 10:_
0.251. I0 -z
0.118. lO-z
0.653.10-_
0.283.10-:
0,878.10 -_
0.880. I0-_

1.0
0.902
0.813
0,586
0. 323
0. 152
0,697.10-t
0.,_16.10 -r
0,145-10-t •

• 0.679-10-_
0,302- I0-_
0,764- I0-_
0,8. I0-e

1,0
1.01
1.021
1.054

1,118
1,133
1. 133
1,121
1. I09
1,098
1.034
0.933 " £

1. 176

!V. I. Feodos'yev and G. B. Sinyarev. Introduction to Rocket

Engineering, 0borongiz, 1961.
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¢Y _A_

The moment Y_*z_d_ is due to a lag in the measurement of the flow taper on

the wing. This lag is due to the propagation time o£ the perturbation from the

wing to the horizontal stabilizer, and it increases with an increase in the rate

of change of the angle of attack. The moment M_ d_ is always negative.
z-_Y

The moment M d_/dt =M wz _ is called the damping moment. The damping mo-
Z Z Z

merit is produced by the variation in the angle of attack when the missile rotates.

The auxiliary angle of attack at any point on the missile is due to its rotation

with respect to the center of gravity. _t increases with increase in the angular

velocity of the missile _ and in the distance from this point to the center of

gravity. Therefore, the principal part of the damping moment is produced by the

variation in the angle of attack of the stabilizer, because the stabilizer has

a substantial lever arm with respect to the center of gravity.

M
The moment M AM is produced by the displacement of the point of application

Z

of aerodynamic forces (aerodynamic focus) during high flight speeds when the com-

pressibility of the air becomes significant. The position of this point is de-

termined by the Mach number. As the Mach number increases, the aerodynamic focus,

as a rule, is displaced to the rear, producing a negative moment. Consequently,

M V

in this case M AM < O. The moments M AV and aM_pYAyg are equal to zero, as shown
Z Z Z

above.

We substitute into equation (8.17) the values for the increments of forces

and of the moment given by expressions (8.22). In this case the terms wit]_ the

_uknown psrameters of longitudinal motion are transferred to the _eft sides of the

equations, and transformations are carried out to give these equations a more suit-

able form for future use. As a result we obtain linearized equations for the lon-

gitudinal motion of the missile

dAO

dt
-- -- b_AO -- b, Aa -- bvAV. + byA ye = b_-A6tC;

d'.$_} ._ ¢_ dA_) dAadt-----_. _ q- C; _ nu C,Sa -k Cv AV -----c_Abel,

dAxg
at = (V, + AV) cos O, _ V, sin O,AO;

aAy_ = (V< + AV) sin o, + V, cos o, ao; A_ + ao = ab
dt

($.26)
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The coefficients contained in _quation (8.26) have the following values

a0 = g COS Oe;

Ve (C • r 2GcosOe'_.

1 ( _l ,4re p,_tcos%l(IV_ _ Cxe't- Cx

2pl' cos =,.pY 2P r cos _eT y '_ .,'.,.,,ry ) '

]/;
,'I;. .... COS :re;

nl

b_---- _'slnO r .;

Ve

'( )SPeV2e '

Me"' + 4'-T-+ ,'

b"v = -- 2",_-"_1( c'''' + '2P" Sin _e''Sv_ + 2PT s'_ "T' ) "SV," '

p_
ba = sin_e ;

niV,¢

_z 2 --

c_ _- m=-L---baS p_V_ tn_

mz 2 m i
Ca =-=- b a S pcVe z •

J'_ 2 2._eFz2

c, = . 2-2 ' .2 -2 " 2,_-r22Z er z 2ge "e rz z

m m

"_e _ ' Pd _
SpeVe pebA S

bA

Ve

-2 ' ]z . ":- bA d_=
,t"z -- ; a.-._--- _.

b 2Ara V e dt

(8.27)

The coefficient _d is known as the relative density of the missile in the

longitudinal motion_ while the coefficient 7 is known as the relative radius
Z

of inertia; the bars over mz and dAff/dt indicate that these quantities are dimen-

sionless. All the partial derivatives in equation (8.27) for the control co-

efficients of longitudinal motion are computed when the value of the argument

corresponds to the unperturbed state.
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In equation (8.26) the angles are expressed/in radians and the distances in
meters, while the velocity is given in m/sec. Sometimesit is desirable to ex-
press the angles in degrees. To do this it is sufficient to change the follow-o
ing eoefficients:a ° = ae/57.3; a° = a /57.3; a° = a6/57.3; b° = 57.3b ; b = 57.3b

0 _ 6 v v y v

by; cV = 57.3c V. The remaining coefficients of equations (8.26) do not change when

we transform from radians to degrees. The equation for the vertical component

of the missile's velocity when transforming to degrees must be written in the

form

dAv_ _ Y..-_E__eA_ _.
dt 57,3

The system of equations for the linear approximation (8.26) is obtained by

taking into account a large number of factors affecting the motion of the mis-

sile. The fact that the role of some of these factors is small was not con-

sidered and, consequently, it was not considered that the corresponding coeffi-

cient in equation (8.26) is small. If we take this situation into account, the

behavior of the missile without the control system described by equation (8.26)

may be represented quite simply.

Let us consider the stability of rectilinear flight with constant velocity,

assumed to be unperturbed when we linearized the initial equations. In this

investigation the last two equations of (8.26) drop from the system, because the

stability of the missile's flight without a control system does not depend on the

coordinate x of its center of gravity and depends very little on the coordinate
g

yg. The coefficients a and b are small compared with the other coefficients in
Y Y

the first two equations; therefore, for simplicity we shall assume that they are

equal to zero. As a result the following equations are left for the analysis of

the stability of rectilinear uniform motion of a missile without a control system

aoAO Jr- a,A_ _]L rdt_V
-}-avAV = a_Abtc ,

dAO

dr. boAO -- b_A_ _ bvA V = bCA_tc ,

dZA_ -_-C_ dA_} dATt

aO -t- Aa = AO.

(8.28)

The characteristic polynomial for a system of equations(8.28) has the form

A(p) =-- p_ -{- _Td, s -l- ad?" -}- a_p -'- aa, (8.29)
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where

c_ = o v -1- b=_ bo -t" c6 -b c; ;

a._ :-- q t b_c_ -t- c= -t- (c; + c; ) (a_, --- b_);

a3 = c_ (a V -- b_) -t- c_ c3 -I,-(c6 -t- c; ) c2 -- a,,cv;

tT_ --- C=C2 _ CvC_;

c== c= + c3;

c_ := _b v -- avbo;
.!

c_ = avb, _ a_bv;

c_ = aob= -- a,bo. . ":

(8.30)

The polynomial A(p) usually consists of a pair of large and a pair of small

roots. The large roots are determined primarily by coefficients a and a ; while
i 2

the small roots are determined by coefficients a3 and a4. The large roots of the

polynomial A(p) characterize the short period motion of the missile; i.e., motion

associated with the establishment of the angle of attack A_ after some perturba-

tion. The small roots characterize the long term motion of the missile which; as

a rule, represents oscillations with a large period and low damping of the veloc-

ity increment AV and the trajectory slope increment be with a practically con-
stant angle of attack. The long period oscillations are sometimes known as

Phugoid oscillations.

//262

AV.O _..

m\eo:Jo ,o V 60 zo_8o 90_sec
V

Figure 8.12. Curves showing variation in parameters of

longitudinal motion of missile when elevator is displaced.

The basic perturbing force for guided missiles is produced by deflection of

the control surfaces. The deflection of the elevator by some constant angle

changes all of the parameters in equation (8.28). In this case, due to the sepa-

ration of the roots of polynomial A(p); we may distinguish between two stages in

the variation of these parameters. The first stage lasting several seconds is

the stage of motion with short period. During this stage there is rapid varia-

tion in the angles be, A_ and A_ (fig. 8.12), and at the end of the period an

almost constant angle of attack is established. The second stage lasts several
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tens or sometimes several hundreds of seconds and corresponds to the long period

motion. During the period of the second stage, there is slow variation in the

angles &e, AO and in velocity AV. Figure 8.12 shows an approximate variation in

the parameters of the longitudinal motion of a missile when the elevators are dis-

placed.

We can obtain an approximate d _scription of the short period motion of the

missile, and also an approximation for the value of the large roots of the poly-

nomial if, in the system of equations (8.28), we let AV = be = O, i.e., if we

neglect the variation in the flight velocity and assume that flight is horizontal.

As a result the first equation of this system becomes isolated from the others
and the system assumes the form

Jd_ ._) d 5_) dA_

at-----t- -]- C_ T -_ ¢; T -Jvc. Aa l'

a +ao=A . ..

(8.31)

The characteristic polynomial for system (8.31) has the form

A,Co) = p [p_+ a_ .+ a21, (8.32)

where

ax=-:b_-}-ci +c6; } (8.33)a, = b,c_ + c,.

The zero root of this polynomial indicates that the missile is neutral with

respect to angles Ae and 5@. To have stability of short period motion without

control system, the coefficients a and a must be greater than zero. The co-
l 2

efficient a is always positive because its components are always positive: b ,
i

c and c Coefficient a may become negative because we have c < 0 for static
_ 2

instability of the missile. The value of this coefficient depends substantially

on the flight velocity amd, as result, the missile which is statically stable at

normal flight velocity amy become statically unstable at low velocity, i.e.,

during launching. The missile with a2 = b c_ + c < 0 is called unstable with

respect to its angle of attack. I In this case stability may be achieved by

using an automatic control system.

iSometimes these missiles are referred to as being unstable with respect to the

load factor.
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Equation (8.31) will be widely applied in analyzing the angular motions
of the missile with respect to its center of gravity.

To give an approximate description of the long period of motion and to find
the approximate values of the small roots of the polynomial A(p), wemust make
an assumption concerning the instantaneous balancing of the missile with respect
to the zI axis. Indeed, after the short period motion terminates, the rapid vari-

ations in angles AOand A_ stop, and the terms with the products of these angles
in the third equation of system (8.28) maybe neglected. This is the sameas
assuming that the missile is balanced instantaneously

c_A_ -J-czAV = c_A6el.
(8.34)

As a result th@ system of equations (8.28) is simplified and assumes the
form

' dAV claeA0 + a_A_ +-_- + avAV = a_A_ t ,

dA__O0_ boA0 -- b_Ax -- bvAV = b_A6tc , > '

c.A_t + cvAV .-- c_,_ el"

(8.35)

/264

The characteristic polynomial for the system ofequations (8.35) is equal to

• A2 (p) = p2 _[_ a ,p. + a 2, (8.36)

where

c V

al = av - be -- a,, -- ;
C_t

C V
az = C a _ C_ --

c=

(8.37)

The values of coefficients c2 and c4 are shown in equation (8.30). If one

of the coefficients aI or a2 is negative, the long period motion of the missile

without a control system becomes unstable, i.e., any of the parameters of this

motion AV, Ae or AO will deviate in time without limit from the value which it

had during the initial unperturbed state. Coefficients aI and a2 can take on

negative values i_ the following cases:

(1) for small or negative value of c2, which takes place when a2 < O; such
M

a case is possible when c < O, because this coefficient enters in the equation

for bv; Y ,
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(2) for very large values of cv associated with a large displacement of the

aerodynamic focus when flight velocity changes; in this case both a and a may
1 2

become negative;

(3) for negative values of a, which may occur for large values of the
V

derivative P_; in this case a < O;
1

(4) for large values of b , which increases with the slope of the trajectory
e

e during pitching; due to the large value of be, al and a2 may become negative;

during diving, be < 0 and the stability of the missile will increase. In all

these cases, the stability of the missile may be achieved by a suitable selection

of the control system parameters.

Equation (8.35) will be used to analyze the motion of the missile's center

of gravity.

Section 8.5. Equations and Analysis for the Lateral Motion of a Missile

Obtained by the Method of Linearization

To obtain the equations of lateral motion it is necessary to find an analytical

expression for the increments of the force and moments entering into equation (8.18).

First we shall consider the equations of lateral motion for a missile with plane

wings, because lateral motion in this case is more complex. After solving this

problem, it is easy to find the equations of lateral motion for a missile with cru-

ciform wings. Figure 8.13 shows the forces I and moments which act on a missile

with plane wings during lateral motion.

The force Z and the moment M and M are given by equations
x y

Z = c_S pV'
---_--}- G sin "r;

pV! . "
A{_ = m,iS_-,

A1 x m xlS _-= ,

(8.38)

(8.39)

(8.40)

where 1 is the wing span; c = c (8, M) is the coefficient of lateral force;
z z

mx = mx (6ai' 6cr' _x' Wy, 8, M) is the moment coefficient Mx; my = my (6ai,6cr ,

1Since it was assumed that the thrust of the engine passes through the center of

gravity of the missile, the projections of the moment of this force on the axis

are also equal to zero, i.e., AN = AN = 0.
x y
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Wx, Wy, _, M) is the coefficient of momentMy; 6cr is the angle of deflection of

the course rudder, and 6 is the angle of deflection of the ailerons.al

Equations (8.38) - (8.40)lShOw that the forces and momentsare nonlinear func-
tions of a series of arguments

z = z@ M. = M.(6ai , ,

My = My(6ai ' 6cr, ,_., _y, _).

i ,zgT \z,

View from top

• _Z t

View from rear

Figure 8.13. Force and moments acting on missile

during lateral motion. Xl' Yl' Zl' are the axes

of the fixed system of coordinates, y is the tilt

angle, _ is the pitch angle, _ is the slip angle,

Z is the lateral force, M is the moment of aero-
x

dynamic forces with respect to the xI axis; M is
Y

the moment of aerodynamic forces with respect to

the Yl axis.

In the initial unperturbed state of rectilinear uniform flight all parameters

for the lateral motion and, consequently, force Z and moments M and M are equal
x y

to zero. During the deviation from the unperturbed state, the increment in force

AZ and in moments AMx, and AMy, as in the case of longitudinal motion, are de-

termined by the first terms in the expansion of these functions in powers of

their arguments

1From equations (8.38) - (8.40) we see that the force Z and the moments Mx and M
Y

depend also on p, V and M; however, since these quantities pertain to the param-

eters of longitudinal motion, their effect c_nnot be taken into account in ana-

lyzing the isolated lateral motion by the method of linearization.
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AZ = Z_ + Z_,

_., _ " to J "

AM x A4,,%i t mx_ 6_r+ "x

• + m.., +Y aio Y cr I

The partial derivative Z is given directly by equation (8.38). To deter-

d ai 6.8
mine the partial derivatives ,.._ M

cr
x _ _ etc. the required relations for co-

x

efficients Cz3 m., and m as a function of corresponding quantities are obtained
x y

analytically or by modeling in wind tunnels. Some of these relations are shown

in figures 8.14 - 8.18. It is obvious that all characteristics must be recorded

at the Mach number 2, corresponding to the initial unperturbed state.

Let us clarify the physical meaning of the individual components of moments

AM x and AMy. The moments M6ai6 and MScr6 are the basic control moments of
x ai y cr

the control surfaces--ailerons and course rudder. The moments _cr6 and
X cr

MSai6 are parasitic moments which produce undesirable reactions on the missile
y ai

when the control surfaces are displaced. The moment M6cr6 produces a tilt of
x, cr

the missile when the course rudder is deflected_ while the moment MSai6 tends
y ai

to rotate the missile with respect to the normal axis Yl when the ailerons are

deflected. Usually these moments are very small and are shown here as part of the

presentation. In most problems these moments can be neglected.

°

Figure 8.14. Variation in coeffi-

cients of lateral force as function

of slip angle.

m_

Figure 8.15. Variation in coeffi-

cients of moment mx as function of
slip angle.

The damping transverse moment M wx_o" and the spiral twisting moment MwXw
x x y x

appear during the rotation of the missile with respect to the x axis when one
1

wing is dropped and the other is raised. The angle of attack and the lift force
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Figure 8.16. Variation in coeffi-

cient of moment m as function of

slip angle. Y

-qoz_ • _Ma
• " I "_

Figure 8.17. Variation in coeffi-

cient of moment m as function of
x

angular displacement of ailerons.

i ¸
• i :. J

Figure 8.18. Variation in coefficient of moment

my as function of angular deflection of course

rudder.

on the dropped wing increase, while on the lifted wing they decrease. As a

result, a moment MWXw appears, proportional to the angular velocity of the
X X

missile w and directed against this velocity (M wx < 0). The variation in
X X

the drag of the lowered and raised wing leads to a twisting moment MWXw
Y x

around the Yl axis, proportional to the angular velocity w • For small angles
X

of attack, this moment is usually negative (Mwx < 0), i.e.# it tends to rotate
Y

the missile in the negative direction (to the right) with respect to the Yl

axls when the angular velocity w is positive (the right wing drops).

The damping twisting moment Mwyw appears due to the variation in the
Y Y

slip angle when the missile rotates with respect to the Yl axis. As in the

case of the damping moment, MWZw _ the origin of moment Mwyw during longitudinal
z z. y y
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motion is due to the effect of the stabillzer--in this case the vertical stabl-

llzer. The moment M_Yw is negative (MWy < 0).
Y Y Y

The moment M_Yw is called the transverse spiral moment. The rotation of
x y

the missile with respect to the Yl axis increases the air velocity and, con-

sequently, the lift on the external wing and decreases it on the internal wing.

As a result, the moment MwYw around the x axis appears and is proportional to
x y 1

This moment is negative (MwY < 0), i.e., it tends to
the angular velocity Wy. x

produce a tilt on the left wing when the angular velocity w is positive (to
Y

the left).

The moment _ is the moment of the transverse static stability. It pro-

x

duces a tilt of the missile when the slip angle appears. The missile has lateral

static stability when _x < O. This means that the slipping, which occurs during

the tilt of the missile, produces a moment with respect to the xI axis which

tends to decrease the tilt.

The moment _ is called the moment of zero--torque stability. This moment

is analogous to the moment of static stability during longitudinal motion. It

is produced because the resulting lateral force (from the fuselage and from the

vertical stabilizer, and in the case of cruciform wings also from the vertical

wing), which appeared when the missile had a slip angle, does not pass through

the center of gravity. If the point of application of this force is behind the

center of gravity, then M _ < O, and the missile has zero-torque stability. The
Y

g_

moment M_B in this case tends to decrease slip angle 8- During the tilt of the
Y

missile, the lowered wing slips. The missile with zero-torque stability rotates

in the direction of the dropped wing and decreases the slip angle.

Let us substitute into equation (8.18) the values of the force and of the

moments given by expression (8.41). We transpose the unknown parameters of

lateral motion to the left sides of equations and reduce these equations to a

more convenient form. As a result we obtain a system of equations which de-

scribes the lateral motion in the linear approximation



-Z + dt " at

d_ + li dr d.,_ 16cr6C rdr----_ -_ _- l.i -_ -1- l_ = 16aiSai +

d_-b d'b dT !
dr.---_ + tZ._-_l -l-n i -_ -_t4_ = nSai6ai + ngcrfCr ,

dzg
a--T= v, (_- _),

where ff is the value of the angle of attack in the unperturbed state.
e

The coefficients contained in equation (8.42) have the following values

(8.42)

. r,,7: . ,_,
k_= -- 2_---j' v,' _,G ,.G

l_ = m_ 16a m_a± . = _ cr
Xelx _eix cr 2- Ix6;

, _elt

m_y my .

n_= nt'y' hi= .niy n_= ,20_6;

n_a_-_:.-:'6; mcr 2. _6; ¢ox-- _l; toy= _l;
_ezy ,ce_y 2 Ve 2 Vt

2m . ra 4 Y'x 4Jy
_¢i= .pea-----_, %=_; i_= _" iy= _.peSVe ml= ' mlz

(8.43)

The coefficient Dd is known as the relative density of the missile in

lateral motion, while i and i are coefficients of the moment of inertia of
x y

and w indi-
the missile with respect to the xI and Yl axes; the bars over w x Y

care that these quantities are dimensionless. All partial derivatives in

equation (8.43) are computed for the values of arguments corresponding to the

unperturbedstate.

In the system of equations (8.42), all angles are expressed in radians.

If it becomes necessary to measure the angles in degrees, the coefficients of

the first three equations remain unchanged, because they contain only the

angular parameters of lateral motion. When the angles are measured in degrees,

the last equation must be -written in the form

dzg Ve= _ (_o- _o).
dt 57.3

To analyze the lateral motion of a missile with cruciform wings or of a

missile with angular wings, equation (8.42) must be slightly changed. Usually
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missiles of this type are stabilized with respect to their longitudinal axis in
a definite position. Assuming that the stabilization system of the missile tilt
works sufficiently well, wemay assumethat the tilt angles and the derivatives
of these angles are small and, therefore, assumethat they are equal to zero in
the second and third equations of system (8.42). As a result, the system will be
divided into two parts. The first part will contain equations describing the
lateral motion of the missile's stabilized tilt

d_dt+ k.# -- 2.Ldt= O, ].--_= + n._--jZ.+n_ -g-+ n# =.nctzr_ Ve(_--*).
dl ..

(8.4_)

where

The appearance of the term n_ d_/dt in the second equation of (8.44) is as=

sociated with the tapering of the flow at the stabilizer. This term has the

same origin as the term C" dA_/dt in equations(8.26), i.e., it is due to the in-

terference between the wing and the stabilizer. In equations for the lateral

motion of a missile with plane wings, this term is absent because there are no

wings in the xl0Y 1 plane. The value of coefficient n_ is equal to

(8.451
n_ = "_ , .

J

2 Vt dt

The s_cond part consists of one equation which must be utili_ed in de-
signing the control system or the system for stabilizing the tilt _

d_T dT
-F Ii -d-_"= 16aiSai •

(8.46)

Let us investigate the stability of the missile's lateral motion without

a control system. Equation (8.44) for the lateral motion of a missile with

cruciform wings and with a stabilized tilt angle are entirely identical to the

lIn equations (8.44) and (8.46) the terms lcr 6cr and nai 6ai are dropped, be-

cause they are small compared with the remaining terms of the corresponding
equations.
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simplified equation(8.31) for the horizontal longitudinal motion with constant
velocity. The third of equations(8.44) is not taken into account in the anal-
ysis of stability, because the coordinate of the center of gravity z has nog

effect on flight stability. The characteristic polynomial for the two first
equations of system (8.44) has the form

n(p)= pip'+ a,p+ a,),

where

at = k_-l-n O+n+, /

a s = k_n+ 4- n_. !
(8.u8)

From the structure and the physical meaning of individual terms, coeffi-

cients aI and a2 of polynomial (8.47) coincide with the coefficients of poly-

nomial (8.32), which were determined from equation (8.33). Therefore, the

analysis of the values of coefficients (8.33) and conclusions concerning the

stability of short period longitudinal motion, presented in section 8.4, may

be applied to the polynomial (8.47) and to the stability of the lateral motion

of a missile with cruciform wings whose angle of tilt is stabilized. We should

only bear in mind that coefficients b , c_, c'_ and c_ of the longitudinal motion

are equivalent (for a missile with cruciform wings) to coefficients k n n_

and n_ of the lateral motion, respectively.

Equation (8.42), which describe the lateral motion of a missile with plane

wings without a control system, turn out to be somewhat more complex than for

the case of a missile with cruciform wings. If we drop the last equation (8.42),

because it refers to the motion of the center of gravity, we obtain a system

consisting of three equations. The characteristic polynomial for this system
has the form

.A_ (p) = p4 + a_3 + as p, + aap + a_, (8.49)

where

a, _- k_+ Ii +'%;

a, . l+n i + li%:-}-k_(l _ +%)+n_ + a,l_; ]a, 4 (/i n+ - n i l+ ) -j- k_l_ + ti n_ -- n i 4 + a, (t_% - t+ n_); +

a4 = kT (4% -- l+ n_).

When we derived the characteristic polynomial (8.49), we took the unknown

functions y, _ and d@/dt in the first three equations of system (8.42), be-

cause, without a control system, the missile is neutral with respect to angle @.
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The coefficient a4 of the characteristic polynomial (8.49), as a rule, is

a rather small positive or negative quantity. As a result, the polynomial

(8.49) has one small real root, which is approximately equal to minus (a4/a3).

The second real root is very large and is approximately equal to coefficient a
1

taken with a negative sign. This large negative root characterizes the intensely

damped motion of the missile with respect to its tilt, since the basic component

aI is the coefficient of the tilt damping moment l'. The remaining two roots
Y

are usually complex conjugates with a small real part. If the small root is posi-

tive (a4 < 0), while the large root and the real parts of the complex roots are

negative, it is possible to have the spiral instability of the lateral motion of

the missile. Since the positive root is small, the parameters which characterize

lateral motion (y, _ and d@/dt) will increase slowly, so that the missile will

move along a spiral. If, on the other hand, the complex roots have a positive

real part, oscillatory instability occurs: the missile will roll from wing to

wing with increasing amplitudes in the oscillations of the tilt angle and the

slip angle. All these phenomena, which are not permissible, are removed by the

missile control system with a proper selection of its parameters.

Missiles which possess complete (or almost complete) aerodynamic symmetry do

not change their motion during rotation with respect to the longitudinal axis.

Therefore, it is not necessary to stabilize the tilt, and they can rotate slowly

during flight due to some inaccuracy in fabrication of the glider. It is obvious

that such missiles have no ailerons. In describing the lateral motion of such

missiles, it is rational to use the flow axes (rather than the fixed axes), which

are fixed with respect to the trajectory and not with respect to the missile and

which, therefore, do not rotate together with the missile in space.

The motion of missiles, which rotate around the longitudinal axis with high

velocity, cannot be divided into its longitudinal and transverse components.

These missiles are subjected to a series of additional force_ which are not con-

sidered in this chapter. Therefore, in the motion of such missiles we cannot use

the equations presented here. The present book does not consider rotating mis-
siles.

Section 8.6. Equations for the Longitudinal Motion of a Missile

Obtained by the Method of Grouping

Let us derive the equations for the isolated longitudinal motion of a mis-

sile. We make use of figure 8.7 showing the forces and moments acting on the

missile during this motion. We write the equations for the projection of the

forces using the flow axes x and y and the moment about the z axis fixed with
1

respect to the missile. These equations have the form
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m -- = G sin 0 -_- P cos 7.,
dt

mV a._o0= y =C cos 0 + P sin _,
• dt
d2_

J_ dt---_ = M,,

_=0+_,

dxe -- Vcos O,
dt

•dy.._.___g= Vsin O.
dt

If we substitute into (8.51) the values of drag X, lift Y and moment M ,
z

obtained from equations (8.23) - (8.25) and transpose the terms with unknown

functions to the left side, we obtain two groups of equations

m aV___+ c.S Pv---_2= -- Gsin 0 + Pcos a;
dt 2

dxg _ V cos O; dy____g= V sin O;
dt dt

(8.52)

PV2a [mV _ _ cvS --_ + G cos O - P sin a = O;

I
:. d2_} ,n_,Sb2A pV d_ ,,,_ Sb_ pV" d_

dt 2 dt 2 dt }

-- ttt_zSbA PV2 a = IIz_ISbA PV3 [7 -_a -F tn_Sba _V2 "z 2 °el,

I0=0+_.

(8.53)

The group of equatioms(8.52) contains equations whose terms are determined

primarily by the motion of the missile's center of gravity, i.e., by motion

which is substantially slower than the motion with respect to the center of

gravity. We make definite assumptions concerning angles 0 and _l and determine

the flight velocity of the missile V from the first equation of (8.52). Since

this equation is nonlinear and has variable coefficients (m, Cx, _, 0, depend-

ing on time), its solution may be obtained most simply by numerical or graphic

means. Following this_ x and y are determined from the second and third
g g

equation.

i

For example, the approximate value of these angles as a function of time, as

we shall show below, may be obtained from trajectories constructed only on the
basis of the kinematics of missile motion.

P
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After the flight velocity has been determined, its value as a function of
time is substituted into equations(8.53), which, as a result, transform into
linear equations with variable coefficients. The nonlinear functions of cos e
and sin e, which remain in the first equation of (8.53), are linearized by means
of someassumption. For example, whenflight is close to horizontal, we may
assumethat cos 0 _ i; whenthe angle of attack is small, wemay assumethat
sin _ _ 0t. If necessary, we mayalso take into account in these equations the
variation in air density with altitude as a function of time, because the varia-
tion in the altitude y as a function of time is determined by the third equation

g
of (8.52). The relation between the altitude and air density is given graphically
(fig. 8.11). In the sameway, by considering the operation of the engine, we may
determine approximately the variation in the mass of the missile m and the moment
of inertia J

Z"

The system of linear equations with variable coefficients obtained in this

way can be analyzed by any of the methods presented in section 2.4.

Section 8.7. Equations for the Lateral Motion of a Missile

Obtained by the Method of Grouping

Let us formulate equations for the isolated lateral motion of a missile with

plane wings with respect to the fixed axes. For this purpose we use figure 8.13.

Assuming that the fixed axes are the principal axes of inertia, and neglecting all

terms which contain the parameters of longitudinal motion, we obtain a system of
equations for lateral motion I

.zV_ --mV d____= Z,
dt dt

J_ _2--T-r= M.,
dg:

Jy e'--Z_= M,,
dt2

dzg -- V(sin _ -- sin }).
dt

(8.54)

M
X

Substituting into (8.54) the values of the lateral force Z and of the moments

and M , using equation (8.41) and transposing terms with unknown functions to
Y

the left side, we obtain

i

The moments due to reactive forces are not taken into account, because it was

assumed that the thrust passes through the center of gravity.
i
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d,S._ m V d/-L-- c_S pV"mV e'7" dt --U _ -- 0 sm "_= O,

J. ,,,:.s. • ,,:.st ,,,Y ,
dl a 2 2 dt 2 dl

d2_, - 1= pY d@
Jy _ -- m;'yS

dl _ .." 2 2 dt

'% -- V (sin _ -- sin _).

(8.55)

i

The first equation has one nonlinear function of sin 7" In the overwhelming

majority of cases, the angle of tilt of missiles with plane wings is limited to

values such that for all practical purposes sin y = y. In this case, the first

equation becomes linear. Thus_ in system (8.55) the first three equations are

linear with variable coefficients. The variation with time in flight velocity

V and, when necessary, in air density p and in missile mass m are taken from re-

sults obtained by solving the equations of longitudinal motion. When the mass

of the missile varies, we can compute approximately the variations in the mo-

ments of inertia J and J as functions of time. As far as the fourth equation
x y

of (8.55) is concerned, it is isolated and can be integrated after the functions

_(t) and _(t) are obtained from the first three equations. However, if it turns

out that it is connected with other equations through the control • system, then,

when we investigate the system to obtain an analytical solution, this equation

must be linemrized by means of some assumption. The simplest assumptions con-

cern the small values of angles _ and _, in which case we let sin _ _ _ and

sin _ _ ¢.

If the missile has cruciform wings and is stabilized with respect to its

angle of tilt, the system of equations(8.55) can be separated into two isolated

groups. The first group contains the equations of motion with respect to the Yl

axis and along the z axis
g

"7

.t y _ -- tnyx S 2 2 at 2 dt

dzz -- V (sin ,_ -- sin _,).
dt

Sl _,_r__.___ _ pV'tn_, mySl -_- 6#

(8.56)

The second group contains the equations of rotation with respect to the x
i

axis, which are used in designing the stabilization system for the tilt of the
missile

Jx d_l _ _ 12 pV d7 pV2m ,x_.._ __ -d-i- = m_Sl7 6ai" (8.57)dt_ •
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In sections 8.6 and 8.7 the method of grouping has been used to obtain

equations with variable coefficients describing the longitudinal and lateral

movements of a missile with variable velocity. These equations will be used

to analyze various methods for selecting the parameters of missile guidance
systems.

f
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CHAPTER9. THESTRUCTUREOFAUTOMATICPILOTS

Section 9.1. General Information

An automatic pilot of a missile is a device which receives signals from
different sensors and by transforming these signals actuates the control sur-
faces of the missile. Thus, the automatic pilot is one of the principal com-
ponents of a missile control system. Figure 9.1 showsthe functional diagram
of an automatic pilot. This diagram includes the sensors, the computer and the
actuators.

 uterH
Actuating mechanism

Figure 9.1. Functional diagram of automatic pilot.

The sensors which feed their signals into the computer measure the values

of those parameters of missile motion which are necessary to provide the necessary

guidance and the necessary dynamic properties of the control system. Such param-

eters include various angular coordinates characterizing the position of the mis-

sile with respect to the target and the surface of the Earth, the derivatives of
these coordinates and sometimes the linear coordinates of the missile's center

of gravity with respect to a given trajectory and the derivatives with respect to

these coordinates. Special equipment, described in Chapters 3-5, is used to mea-

sure some of these parameters. Other parameters are measured by sensors which

are common to all missiles, such as gyroscopes, manometers, accelerometers, etc.

Some of the devices which pertain to sensors (fig. 9.1) may be very com-

plex elements of the control system, containing closed loop automatic control

systems, tracking systems and computer elements. Such complex devices include

the homing heads of missiles, radar receivers for developing control signals dur-

ing beam guidance, gyro-inertial systems for determining the coordinates of mis-

siles with self-contained guidance and many other control elements.

The computer of an automatic pilot in the simplest case represents a sum-

mation device which adds the signals from the sensors in a required proportion.
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In the general case, the computer may perform any operations on the signals which

it receives. The basic operations of the computer are described in Chapter 6.

When the signals are transformed, it is frequently necessary to amplify their

voltage or power, which is accomplished by the amplifiers of various types con-

sidered in Chapter 7. A computer shapes the control signal u, which is fed to the

actuator of the automatic pilot. The latter represents a device which moves the

control surfaces of the missile. 1 The driving units used aboard missiles may be

electric, pneumatic or hydraulic. These forms of actuators are described in

Chapter 7. Thus, all elements contained in an automatic pilot of a missile have

been described in previous chapters. In the present chapter we shall consider

the more common functional diagrams of automatic pilots.

Section 9.2. Functional Diagrams of Automatic Pilots

According to figure 9.1, the sensors in the computer shape the control sig-

nal which must be utilized by the actuating mechanism of an automatic pilot. One

way of classifying automatic pilots is by the structure of their actuating mech-

anisms. To clarify this structure, let us consider the functional diagram of

this mechanism, shown in figure 9.2. As we can see, the actuating mechanism in

the general case represents a closed loop automatic control system for the control

surfaces. The driver with a power amplifier, characterized by the transfer func-

tion W6/6u(p), rotates the control surface by means of a reducer or without it,

and the deflection of the control surface is measured by some sensor. The signal

from this sensor moving along a feedback path with transfer function Wuls(p) is

fed to the input of the system, where it is compared with control signal u. From

the form of the transfer function for the feedback loop (Wul/8(p)) it is custom-

ary to distinguish between automatic pilots with fixed feedback and automatic

pilots with rate feedback or without feedback and, finally, automatic pilots with
isodromic feedback.

i. Automatic Pilot with Fixed Feedback. In automatic pilots with fixed

feedback the transfer function of the feedback network is constant, i.e.,

(9.1)

Most automatic pilots use electrical signals in the signal shaping networks.

In this case, fixed feedback is accomplished in the form of some signal generator

(potentiometer, selsyn) which transforms the angular deflection of the control

surface into an electric voltage.

The transfer functions of drivers (electric, hydraulic, pneumatic) in the

region of their linear characteristics are the same and have the form (see equa-

tions (7.15), (7.23) and (7.29))

1

The actuator of an automatic pilot is frequently called the control surface

mechanism.
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w 1,U@) ....kd 0 (9.2)
p (Tdp + l)

where k is the amplification factor of the drive equal to the ratio of the
d

angular velocity of the control surface to the voltage Au at the output, and T
d

is the time constant for turning on the driver which produces the lag and the

driving force.

Ul_ a

Figure 9.2. Functional diagram of

actuating mechanism of automatic

pilot.

• es_ a

Figure 9.3. Functional diagram of

actuating mechanism of automatic

pilot with fixed feedback.

The functional diagram of an actuating mechanism of an automatic pilot with

fixed feedback is shown in figure 9.3. On the basis of this functional diagram

we obtain the differential equation which describes the dynamics of the actuating
mechanism of an automatic pilot

The actuators of automatic pilots are designed in such a way that the start

time T is as short as possible, and in any case, is less than one second. This
d

time constant is divided into the product of coefficients kd/kc, which usually

has a value of 3-10 i/sec. For these reasons, the coefficient in front of the sec-

ond derivative turns out to be very small and at this time can be neglected. As

a result, we obtain a differential equation of the first order

T ':

where T
a

i = 1/k
a e

= i/k_k_ is the time constant of the actuator of the automatic _ --oilot, and
c

is the transfer factor (amplification factor) of the actuating mech-

anism of the automatic pilot.
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The value of the time constant T in modern automatic pilots is equal to
a

(0.i to 0.3) sec, while the control time for the most rapid motions of the mis-

sile involving variation in the tilt angle and the pitch angle is 1.5 - 3.0 sec.

The control time of the yaw angle and particularly of the linear coordinates of

the missile is substantially greater. These data make it possible to neglect

the time constant of the automatic pilot when selecting the parameters of the

missiSe control system (make it possible to neglect the transfer factors of the

automatic pilot with respect to specific parameters fed into the computer). As

a result of this assumption, the differential equation of the automatic pilot

(9.4) is transformed into an algebraic equation

8---_iau. (9-5)

Equation (9.5) is the equation of an ideal automatic pilot, i.e., one
without inertia.

As we can see from the functional diagram in figure 9.1, the control sig-

nal u_ in general_ is the sum of several signals. Thus, for example, when sta-

bilizing the tilt angle of a missile, the control signal may be expressed in
the following manner

dy
tt----kc_-_ ki_-, (9.6 )

where y and dy/dt is the tilt angle of the missile and its angular velocity

respectively.

Substituting this value of u into equation (9.5) we obtain

(9.7)

where i = i k is t.he transfer factor of the automatic pilot with respect to
y ay

tilt, and i" = i k. is the transfer function of the automatic pilot with respect
y ay

to the angular velocity of tilt.

The final equation of the automatic pilot (9-7) will not change if equations

(9.5) and (9.6) are written in the following form

: u, (9.8)

tt= iT"_q-ii aTa'-7" (9.9)

In practice it is more convenient to represent the automatic pilot by means

of transfer numbers (iy, i'_, etc.) with respect to different signals, as done in

equation (9.9), than to take into account the transfer number of actuating mech-

anism of the automatic pilot ia and portions of the signals (k, k., etc.) as is
- V Y
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done in equations (9.5) and (9.6). Therefore, the equation of an ideal automatic

pilot will be written in the form (9.8) for convenience. As we can see from ex-

pression (9.8), the ideal automatic pilot with fixed feedback produces an angu-

lar deflection of the control surface equal to the control signal.

It is necessary to point out that the equations for an idealized automatic

pilot can be used only when the parameters of the control system are selected in

the manner indicated. In analyzing the operation of the actuating mechanism it-

self, the complete equation (9.3) should be used. This is particularly impor-

tant wheninvestigating the effect of various nonlinearities in the actuating

mechanism (free play, zone of insensitivity, dry friction), which were not taken

into account in deriving equation (9.3), but which may produce a substantial ef-

fect on the proper operation of this mechanism. This pertains not only to an

automatic pilot with fixed feedback, but to all of the automatic pilots considered
below.

2. Automatic Pilot with Rate Feedback or Without Feedback. To form rate

feedback, it is necessary to obtain a signal which is proportional to the angular

velocity of the control surface, i.e., to the derivative of the angular displace-

ment of the control surface. In this case, the transfer function of the feedback
network has the form

,(,,)= 1-r. (9.1o)

To obtain this signal, a tachometer is usually used, with voltage propor-
tional to the angular velocity of the control surface.

The functional diagram of an actuating mechanism of an automatic pilot

with proportional feedback is shown in figure 9.4. On the basis of this func-

tional diagram we obtain a differential equation which describes the dynamics

of the actuating mechanism of an automatic pilot

d16 d6
T, -_- + --_- = i, tt,. (9.11)

where

Td ;
T, = I_dk_

il = - kd •

.... I+kdk 

(9.12)

If rate feedback is not introduced (kc = 0), we obtain a diagram of an

actuating mechanism of an automatic pilot without feedback, whose equation has

the same form as equation (9.11) of an automatic pilot with rate feedback, but

the values of the time constant and of the transfer number are determined by ex-
pressions
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A comparison of expressions (9.12) and (9.13) for the time constant and

the transfer number of the actuatin_ mechanism of automatic pilots with rate

feedback and without it shows that the introduction of rate feedback leads to

a decrease of both these quantities by a factor (i + kdkc). As we have already

stated, the value of the time constant T is usually small, and the introduc-
d

tion of rate feedback is not necessary in these cases. Therefore, the automatic

pilots of this scheme are most frequently designed without rate feedback. If

in equation (9.11) we neglect the lag in the actuating mechanism of the auto-

matic pilot due to the small value of the time constant Ta, we obtain an equa-

tion for the ideal automatic pilot with rate feedback or without feedback.

= (9.14)
dt

From the analogy with equation (9.8), equation (9.14) may also be con-

veniently written in the form

i< = 4, (9.15)
dt

by referring the transfer number of the actuating mechanism of the automatic

pilot to the transfer number of the entire automatic pilot with respect to

Figure 9.4. Functional diagram of actuating mech-

anism of automatic pilot with rate feedback.

individual si_uals. Thus, equation (9.15) shows that for an ideal automatic pilot

with rate feedback or without feedback, the angular velocity of the control sur-

face is equal to the control signal.

3. Automatic Pilot with Isodromic Feedback. In purely mechanical automatic

control systems (e.g., in a centrifugal regulator of angular velocity), a device

known as an isodrome was used to realize astaticism. The diagram of an isodrome

is shown in figure 9-5. The input quantity of the isodrome is the displacement y

of the control lever connected with the piston rod, while the output quantity is

the displacement x of the isodrome cylinder. During a sudden displacement of the
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lever's end by y, the cylinder with the piston behaves like a rigidly connected

body, and the piston obtains a displacement x proportional to y. The spring is

compressed and, due to the pressure difference, the liquid in the connecting

tube begins to flow from one cavity to the other until the piston assumes an

equilibrium position (x = 0). The transfer function of an isodrome has the form

%p+l .

(9.16)

where T is the time constant of the isodrome, which depends on the cross sec-
i

tion area of the cylinder s_d of the connecting tube and also on the rigidity of

the spring; and k is the factor of proportionality equal to the ratio of the arms
c

of the driving lever.

As shown in Chapter 6, the transfer function analogous to expression (9.16)

is characteristic of an RC differentiating network (equation (I) in table 2.5).

Therefore 3 to achieve isodromic feedback in an automatic pilot with electric sig-

nais_ the control surface must be displaced to cause the potentiometer to gen-

erate a signal and to feed this signal voltage to the RC network.

-x o x

ng : .. [__ {fdP+_)PkcTiP
TAp _ I "

y o-y

Figure 9.5-

isodrome.

Schematic diagram of Figure 9.6. Functional diagram of

actuating mechanism of automatic

pilot with isodromic feedback.

The functional diagram of an actuating mechanism with isodromic feedback is

shown in figure 9.6. On the basis of this functional scheme we obtain the dif-

ferential equation

TiT_ _6;___ Ti + Td d=6
, dk,ri -- i + kdkj"i +

d6 kdTi da k d

dt I+Rd_¢T i dt q- l+kdkc_ i

(9.17)
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Since the quantity (i + k k T ) is usually much greater than _ity, the
dci

coefficients in front of the third and second derivatives with respect to the

angular deflection of the control surface turn out to be quite small. To select

the parameters of the control system we can neglect these terms in equation

(9.17) and obtain an equation for the ideal automatic pilot in the form

d6 = iaTi dud--i- --gF+ i,u,

where [a= kd

 +kd <ri
matic pilot.

is the transfer number of the actuating mechanism of the auto-

As in the preceding cases, the coefficient i may be referred to the trans-
a

fer numbers of the automatic pilot for different signals. As a result, the equa-
tion of an ideal automatic pilot wi_h isodromie feedback takes the form

d.___6= T. d_---L-tq- tt.
dt 1 dl

(9.19)

Equation (9.19) shows that in this automatic pilot the rate of control sur-

face deflection is proportional to the control signal as well as to its deriva-
tive.

Section 9.3. Examples of Automatic Pilot Systems for

Controlling Missiles

As an example of an automatic pilot with fixed feedback we consider the

automatic pilot of an airplane-missile which is guided to the target by means of

a radio navigation system (hyperbolic or circular, see section 4.4). Figure 9.7

i while figure 9 8 showsshows the functional diagram of such an automatic pilot,
its individual blocks and their interaction.

In the vertical plane the missile is controlled by elevators, while in the

horizontal plane it is controlled by means of the tilt angle produce_ by ailerons.

The rudder is designed only to eliminate slipping, which may occur during the

evolutions of the missile. The slip angle (_) is measured by means of a special

sensor. The stabilization of the missile with respect to the pitch angle (O) and

the tilt angle (y) is accomplished by signals from the gyrovertical. To improve

the dynamic characteristics of the stabilization process according to these

parameters, signals are transmitted from the rate gryoscopes, which give the angu-

lar velocities of pitch (d_/dt) and tilt (dy/dt). The stabilization of altitude

IThe solid lines between the blocks of the diagram in figure 9.7 correspond to

electric couplings, while the broken lines show mechanical couplings.
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Figure 9.7. Functional diagram of automatic pilot

with fixed feedback, l--gyrovertical; 2--magnetic

course sensor; 3--radio navigation unit; 4--altitude

sensor; 5--rate gyros; 6--computer; 7--s!ip; 8--

aileron actuator; 9--feedback sensor; 10--altitude

control surface actuator; ll--feedback sensor; i2--

course rudder actuator; i3--feedback sensor; (sub-

scripts ai = aileron_ a = altitude, c = course).

is accomplished by an altitude sensor (y). The stabilization of the missile
g

on a given trajectory is accomplished by a signal showing the deviation of the

center of gravity of the missile from this trajectory (Az), which is produced

by the element of the radio navigation system. To improve the dynamic character-

istics of the stabilization process along the trajectory, the signals from the

magnetic course sensor (_m) and from the rate gyroscope for yaw (d_/dt) are

used. The radio navigation system measures the range to the target (L), and

when the desired range is obtained, it sends a signal (83) to put the missile

into a dive towards the target.

All sensors of an automatic pilot produce their signals in the form of

electric voltages and transmit them to the computer. Here, the signals are

processed, smoothed out to the desired degree and fed to actuating mechanisms of

all three control surfaces. Due to fixed feedback, the angle of deflectio] _ of

the control surface is proportional to the control signal fed to the input of

the actuator. By applying the coefficient of proportionality to each component

of this signal we obtain an equation of an automatic pilot with fixed feedback

in the form 6 = u. The computer provides for the execution of all evolutions

of the missile in the horizontal plane without slip and without loss of alti-

tude. A detailed analysis of the dynamics of a missile with automatic pilot for

various control systems is presented in Chapters i0 and ii.
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Figure 9.8. Component parts of automatic pilot with fixed feed-

back. l--gyrovertical; 2--equipment for obtaining magnetic

course (sensor, gyroscope, amplifier); 3--computer and power am-

plifier; 4--slip angle sensor; 5--one of three hydraulic actuators;

6--altitude sensor; 7--transceiver of the radio navigation system;

8--communication unit between automatic pilot and radio navigation

equipment; 9--rate gyroscopes for pitch, yaw and tilt.

• .. |

Figure 9.9. Functional diagram of automatic pilot without feed-

back. a--gyrovertical; b--course gyro; c--programming mechanism;

d--sensor for turning on the motor; e--computer; f--control actu-

ator; g--control actuator; h--control actuator; i--control actu-

ator; j--valve for turning on motor; (subscript m = motor).
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As an example of an automatic pilot without feedback we consider the auto-
matic pilot of a ballistic missile. The rocket is controlled only over the
active region of its trajectory, whenthe engine develops a thrust substantially
in excess of its weight. Since the rocket has no wings, the control force which
varies the flight trajectory is obtained by moving the frame of the rocket with
respect to its center of gravity, as a result of which the thrust produces a
componentwhich is normal to the initial flight direction (figure 1.8). Figure
9.9 showsthe block diagram of an automatic pilot used in a ballistic missile.

Figure 9.10. Position of rocket control
surfaces, i, 2, 3, 4--jet control sur-
faces; i', 2', 3', 4'--aerodynamic con-
trol surfaces.

The stabilization of the missile in space is achieved by signals from the gyrover-
tical (pitch angle _ and tilt angle y) and from the course gyroscope (the yaw-
angle _). To obtain the desired trajectory along the active region (fig. 1.21)
in accordance with a preestab!ished program, the value of the pitch angle (_3)

of the rocket is changed. To achieve this, a special programming mechanismis
used. The flight velocity of the rocket is controlled from the Earth by means
of a radar system using the Doppler principle. Whenthe rocket achieves a pre-
assigned velocity value, a signal (Ue) is sent from the Earth to turn off the
engine.

The principal function of a computer of the automatic pilot without feed-
back is to obtain the first and secondderivatives of the signals showing the
mismatches in the pitch, tilt and yawangles. These signals are obtained by
meansof the differentiating network described in Chapter 6. The necessity of
introducing signals of the first and second derivatives with respect to the angu-
lar coordinates of the rocket, whenusing an automatic pilot without feedback, is
shown in Chapter i0_
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The rocket is controlled by four aerodynamic control surfaces and four

control surfaces placed in the gas jets which exit from the nozzle of the engine.

The position of the control surfaces along the cross section of the nozzle is

shown schematically in figure 9.10 (view from the rear). I The aerodynamic con-

trol surfaces operate only in the dense regions of the atmosphere and are ...."_

iary. Each of the four control sumfaces in the gas jets is actuated hydraulic-

ally and has no mechanical coupling with the other control surfaces. Control

surfaces 2 and 4 are situated in a plane perpendicular to the firing plane and

control the pitch angle. Control surfaces i and 3 are situated in the firing

plane and operate as e!evons. When both control surfaces are deflected in the

same direction they control the yaw angle of the rocket and when they are de-

_7 • t_e-_ stabilize the angle of tilt. Since the_ected _n opposite directions, ..

control surface actuators have no r._edback, the velocity of the control surface

is proportional to the control signal. By applying the coefficients of pro-

portionality to the individual components of this signal, we obtain an equation

for an automatic piiot without feedback in the form d6/dt = u.

Section 9.4. Automatic Pilot Using Relays

As an example we describe an automatic pilot using relays, diagramatica!ly

shown in figure 9.11_ The operation of this automatic pilot is based on the

principle of the vibratory iinearization of a relay system by delayed feedback

in the amplifier (see section 2.6). The deviations from a given course are

measured by the position gyroscope G with a potentiometric sensor P • Sensor P
i i

and the potentiometer of the control surface P2 form a bridge, which is fed by

an AC current through transformer T I. The amplifier is a tube amplifier using

tubes LI, L2, L and relay amplifiers R and R2, linearized by vibration Tubes3 i "

LI and L 2 are used for the amplifying stages, while tube L serves as a phase
3

discriminator. The actuator consists of an electric servomotor running at a con-

stant velocity with an electromagnetic friction clutch controlled by relays R and
i

R . Sensor P is the negative feedback potentiometer.
2 2

Let us consider the principle of vibratory linearization for this case.

The windings of R I and R 2 are connected to the plate circuits of tube L 3. In

addition to the contacts which control the servomotor, each relay has contacts

for controlling the feedback loop. A positive voltage is fed to the R2C network

through contacts CII and C21 and resistance R I.

i
V. I. Feodos'yev and G. V. Sinyarev.

0borongiz, 1960.
Introduction to Rocket Engineering,
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Figure 9.11. Automatic pilot using relays.

The operation of the system takes place in the following manner. When an

input signal appears, one of the triodes of tube L3 conducts and the plate current

operates the relay. Depending on the sign of the deflection, either relay R or
i

relay R 2 operates and turns on the storage cell R C. The condenser C charges and2

in this way the positive potential increases on the grid of tube L . The operat-
2

ing point on the grid characteristics is displaced into the region of saturation,

the amplification factor of the tube decreases, the AC voltage on the grid of

tube L 3 decreases and the relay opens. After the relay opens, condenser C dis-

charges, the positive potential on the grid of tube L 2 decreases, its amplifica-

tion factor increases and the relay again closes, etc. The system undergoes self-

sustained oscillations. When one sign deviates, only one relay pulsates. If the

input signal is absent, there are no oscillations in the system. The actuator

consists of a driver D_ which rotates the gears attached to it in opposite direc-

tion. In this case the control surface is not actuated. When a current appears

in one of the windings of the electromagnetic clutch_ rotation is transmitted to

the control surface. The direction of rotation depends on the clutch which is

actuated by the current. If the clutch is de-energized (the contacts of the re-

lay are open), the position of the control surface is fixed by electroma_uetic

brakes, not shown in figure 9.11. When the axes of the missile are deflected

from the assigned positionj the control surface is displaced into a new position

during several pulsations of relays RI or R2. The angle of rotation of the con-

trol surface is proportional to the deviation of the corresponding axis from the

assigned position.
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CHAPTERi0. CONTROLOFMOTIONOFA MISSILEWITH
RESPECTTOITS CENTEROFGRAVITY

Section I0.i. General Information

As we have pointed out in Chapter i_ the ultimate purpose of a missile
control system is to maintain the trajectory of the missile so that it passes
through the target or close to it. The missile control system is sufficiently
complicated and, therefore, its analysis to select various parameters which de-
termine this system is carried out in several stages. The first stage provides
for adequate control of the missile with respect to i_s center of gravity. This
motion produces the force which controls the missile.

The present chapter is concerned with the methods of controlling the motion
of various missiles with respect to their center of gravity. This analysis will
be based on the equations of longitudinal and lateral missile motion presented
in Chapter 8. _nen using these equations, it is necessary to bear in mind one
important situation. Strictly speaking_ if we use the equations obtained by the
method of linearization or the method quasifixation of the coefficients; we can
only establish the stability or instability of the system described by initial
nonlinear equations or by equations with variable coefficients. However, in the
present book these equations will be used to investigate the dynamics of the sys-
tem by constructing the transient processes or by using the frequency character-
istics.

This approach is justified in most of the problems concerned with the motion
of the missile, if the nonlinear functions which describe its motion do not have
characteristics close to discontinuities; or if the rate of variation of the co-
efficients is not too great. The criterion for the suitability of this approach
involves a sufficient coincidence of the dynamic characteristics of missiles ob-
tained by means of the simplified equations and the exact equations; whenthe
exact equations are solved by computers.

Section 10.2. Lateral Motion of a Missile with Cruciform Wings
Whenthe Control S_o_rfaceis Deflected

As shownin Chapter I most of the missiles are controlled by the rotation of
the missile frame around the center of gravity by meansof control surfaces. The
control surfaces may be aerodynamic surfaces or jet surfaces. Sometimesit is

iThere is only a narrow class of missiles which does not require the preliminary
rotation of the missile frame with respect to the center of gravity.
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necessary to rotate the combustion chamberof a reactive engine to produce the
desired momentwith respect to the missile's center of gravity.

Let us consider a simple pro%iemof varying the trajectory of the missile
by deflecting its control surfaces. Let us assumethat the missile moves in a
straight line with constant velocity. It is necessary to determine its par_a-
eters of motion after the control surface has been deflected, neglecting the
change in its flight speed_ i.e., considering that the perturbed motion of the
missile takes place at constant velocity. To make the problem even simpler,
we consider the lateral motion of a missile with cruciform wings. In this case_
the forces of gravity do not affect the missile. Finally, we shall consider a
missile whoseangle of tilt is staLilized.

To analyze the motion of a missile under these conditions, we use the first
two equations of the linear approximation (8.44) for the lateral motion of a
missile. The third equation is not considered, because the coordinate of the
center of gravity is not contained in the first two equations. If, in a missile
moving in a straight line, we deflect the control surface or use someother
method to produce a momentwith respect to the center of gravity, the fr&me of
the missile will start to turn. An angle of attack will appear together with a
control force which will vary the direction of the missile's velocity vector.
Figure i0.i showsthe forces and momentsacting on the missile with cruciform
wings whenthe control surface is deflected.

Taking into account the obvious relation @= 8 + 9, we can transformb

the first two equations of (8.44) so that the equations for the slip angles and
the rotation of the trajectory will be

•. .. __or cr,

clt3 (k_ + n_ -k n4 )-_,2 -b (k_n._ -k n_) _dt = k_n_crScr

(lO.l)

(10.2)

The two equations are linear with constant coefficients and their integra-

tion therefore poses no difficulty. The value of the coefficients contained in

these equations is associated with aerodynamic and structural characteristics of

the missile and is given by (8.43).

With a sudden deflection of the course rudder by an angle $ the integral
er _

of equation (i0.!) has the form

_ : _st(l-- Ple'g--P°e'it),= _-_72 • (!0.3)

(subscript st = stabilized),

where _ - _ cr6cr is the steady state value of the slip angle obtained after

st k_n_ + n_

the transient process ends; Pl and _ are the roots of the characteristic eouation
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:p' .-F(_ + no .+ n_)p _ k_.._+ n_=b: (lO.4)
. .. . .

It is more convenient to apply this equation in normalized form, which is

common to any differential equation of the second order

P_ + 2¢_0P -t- P._ = O, (lO.5)

where _ is the relative damping coefficient, and
0

angular frequency of the system.

Is the natural or resonance

" " . ' . Jrl "

• /Ay,_y

1 z_, \_, . ..... .:..
IZ_ " " "

Figure i0.i. Forces and moments which act on missile

with cruciform wings during lateral motion. Xl, Zl--

body axes; Xg, z --Earth axes; V--velocity of missile;g

t--angle of yaw; _ --angular velocity of yaw; _--sllp
Y

angle (analogous to the angle of attack); eb--angle of

rotation of trajectory (analogous to slope of trajec-

tory during &ongitudinal motion); Z--lateral force

(analogous to lift); Z --lateral force of course rudder
P

which produces moment due to course rudder _8; M --sum
Y

of remaining moments which act on missile when it turns

with respect to 0y I axis.

These newly derived parameters _ and
0

characteristic equation (10,4) in the following manner

|

can be expressed In terms of the

(10.6)
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•-o0 -- ]/k#_$ + zz_.

If _ _ i, the roots of the characteristic equation (10.5) are real

=

(10.7)

(io.8)

For the case _ < i the roots are complex

(-¢+_ (lO.9)

In this case, the solution of differential equation (i0.i) may be con-

veniently expressed in the form

[ e-:2°t ]_--_st I SIn(}q--_2°ot+ _) (i0.i0)V_

where

= arctg .,V1 --_ (lO.il)

Both solutions (10.3) and (i0.i0) of equation (i0.i) show that when the

control surface is deflected a slip angle is produced which; after the transient

process; assumes some stationary value proportional to the angle of deviation of

the control surface. When an angle of slip is present; a lateral force Z is

produced; which is perpendicular to the flight velocity, and the missile in its

steady state must move along a circumference. This physical consideration is con-

firmed by the analytical solution of equation (10.2) for the angular displace-

ment of the trajectory

8b •_'k_st[t+ P,+P2 ,_e'' ,,e" ] (10.12)

where Pland P2 are the roots of the characteristic equation in form (10.4) or

(10.5).

After the transient process is over; an angular displacement of the tra-

jectory has the value

t Pl+P_ )0 b =k;_ st_t -F -]h--_ " "
(i0.13)

Expression (10.13) shows that in the steady state the angular displace-

ment of the trajectory varies according to a linear law; which means that the
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missile can fly only along a circle if its speed is constant. Indeed, the steady

state value of the angular velocity of the velocity vector on the basis of (10.13)

is equal to

d% ] _ h_ =_i_n6cr 8.cr (10.14)
-_-/st- st k_$ + _

Equation (10.14) also shows that for a slow deflection of the control sur-

face, when the transient time for the establishment of the slip angle may be

neglected compared with the time during which the control surface moves, the

steady state value of the slip angle as well as the angular rate of change of the

missile's velocity vector are proportional to the angular deflection of the con-

trol surface.

•-<" ""',.kstf
.f:
I . " _ • I""

1.0, .

• . \Q " o,8
•" .. •"--.-x_;_/T_ o.6

•
_-1-.._"

,I, deflection of o.z

•: .,..T control surface 0

l -o.2sI I

I Z ,_ 4 E, 6 Y $ g _

Figure 10.2. Trajectory of missile

after deflection of control surface.

Figure 10.3. Curves showing varia-

tion in slip angle after sudden de-

flection of course rudder.

Figure 10.2 shows the trajectory of a missile, which had been moving in a

straight line, after the control surface is deflected by an angle 6 at point A.
cr

The region AB may be called the transient trajectory during which a steady value

of the slip angle is established. The possible nature of this process, when the

relative damping varies as a function of dimensionless time T = _0 t, is shown in

figure 10.3. The curves in figure 10.3 reflect the solution of (i0.i). I_ is

obvious that since these curves ark constructed in relative units, they are suit-

able for the analysis of the solution of _uy second order equation with constant

coefficients. The duration of the transient process in terms of the dimensionless

time T is determined as the time during which the value of the slip angle achieves

a specified deflection from its steady state value. Thus, for example, if this

deflection is 0.05 of _st' when _ = 0.25, 0.5, 0.707,-I.0 and 1.5, we obtain the

values _ = 10.2, 5.3, 2.8, 4.5 and 8.2, respectively. The true control time is
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determined by means of equation (2.9)• Thus, for any damping _, the time for

the establishment of the slip angle is determined by the natural frequency of

the missile _0"

To establish the effect of missile parameters and of flight parameters on

the natural frequency and relative d&mping, it is necessary to substitute the

values of coefficients from (8.43) into equations (1@.6) and (10.7). As a result,

we obtain the expressions

(i0.15)

_S SI= _

2 c_sn_YpeS i-D

2 _ 4m

(10.16)

Let us analyze these expressions. Let us remember that coefficients c_, m B

z y
and m y are always less than zero; consequently, we always have _ > O. The coeffi-

Y

cient m_ for the missile has a static zero-torque stability less than zero. When
Y

this coefficient increases, the natural frequency of the missile _ increases,
0

but there is a simultaneous decrease in the slip angle(equation (10.3), coeffi-

cient n ) for the same angular displacement of the control surface, i.e., the

controllability of the missile deteriorates. A missile which is statically neutral

(m_ = O) will have a low value of _ and a long control time, if it has no control
Y 0

system. A missile which is statically _nstable also becomes dynamically unstable

for some value m _ > O, if _2 < O I In this case, when there is some random dis
Y O

placement of the missile from rectilinear flight (even when the course rudder is

not deflected) the slip angle will increase continuously until it reaches a critical

value. After this, the uniform flow around the missile is disrupted and the flight

of the missile becomes random in nature. Thus, the normal flight of a dynamically

unstable missile is impossible without a control system. /296

_hen 2 < 0 we must substitute the absolute value of the natural frequency into
0

the expression for the damping coefficient, i.e., this coefficient should be

written in the form 2_[ _0 i.
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Expression (10.15) also shows that the natural frequency of the missile
increases with flight velocity V and decreases whenthe flight altitude in-

0 e
creases due to a decrease in p_--. It is precisely the last condition which ex-

e

plains the fact that at high altitudes the transient time for the establishment

of a new slip angle after the control surface is deflected becomes very long.

We note that the first term contained in the brackets of equation (10.15),

as a rule, is substantially less than the second term, and in the overwhelming

majority of cases it may be neglected. Therefore, the natural frequency of a

missile for given flight conditions is dete_ined almost entirely by the coeffi-

cient of static stability mE. The relative damping coefficient equation (10.16)
Y

decreases with an increase in altitude, due to p_--, which deteriorates the damp-
e

ing of the missile with respect to its center of gravity. As we shall show the

control system may be used substantially to decrease the effect of flight condi-

tions on the dynamic characteristics of the missile.

Let us also consider the effect of flight characteristics on the effective-

ness of the control surface. This effectiveness may be evaluated from the value

of the proportionality coefficient between the values of the steady state slip

angle and the deflection angle of the control surface equation (10.3). Instead

and n , let us substitute their values from (8.43).
of coefficients n6cr, k_, n

We have

(lO.17)• _st= "_cr"
: _ + _• - - p,s 

Equation (10.17) shows that when the flight altitude increases (due to a

decrease in p ), the slip angle _ will increase for this angular displacement
e st

of the control surface 6 , i.e., the effectiveness of the control surface in the
cr

above sense increases. However, this effective altitude for most missiles is

negligibly small. This is explained by the small value of the second term of the

denominator in equation (10.17), compared with the first term for missiles with

normal static zero-torque stability. The flight velocity is not contained in

equation (10.17) and consequently does not affect the variation in the slip angle

as a function of the angular displa2ement of the control surface.

It should be pointed out that all of these considerations concerning the

effect of flight on the natural frequency of the missile as they pertain to damp-

ing and the effectiveness of the control surface take into account only the ex-

plicit variation in these quantities as a function of velocity. In addition, it

is necessary to bear in mind that the flight velocity (more precisely, the Mach
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number of flight) affects the c$ m B m B _ 6, , m y, m cr (section 8.5). To take this
z Y' y y y

situation into account when carrying out the design, we must have the correspond-

ing characteristics of these coefficients as a function of the Mach number.

As shown in figure 10.2, after the missile has completed its path over the

transient trajectory AB, it moves along a circle with radius R. This radius is

given by the expression

_ Vp
• I

1
_-_-J st

(lO.18)

where /_k\(_b) is the angular rate of rotation of the missile's velocity vector

\ st

in the xoz plane.
g

On the basis of (iO.14) this angular rate is equal to

(i0.19)

Substituting the value of (deb/dt )st into equation (lO.18) and taking into

account the value of coefficient k from (8.43), we obtain an expression for the

circlel:

R= 2_s (10.20)

_ ..._ _P,_ st

where gs = G/S is the specific load on the wing.

Equation (10.20) characterizes in a definite way the maneuverability of the

missile and, in particular, clearly shows that R increases with flight altitude

(due to a decrease in p ). However, the maneuverability of missiles is more con-
e

veniently characterized by the load factor, i.e., by the ratio of the resultant

of aerodynamic forces (including the thrust) to the weight of the missile. Some-

times, however, the load factor is determined as the ratio of the acceleration of

the missile due to aerodynamic forces to the acceleration due to gravity. It is
obvious that both of these definitions are identical. In considering curvilinear

iThe negative sign in equation (10.20) disappears after we substitute the value

of c _ which is always negative.
Z
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flights, it is convenient to use the components of the load factor along dif-

ferent axes: nx, ny and nz. Then the total load factor is determined by the

equation

2 2+ + (lO.21)

When evaluating the possibility of realizing some curvi!inear trajectory,

the turning radius R and the load factor are equivalent characteristics, be-

cause for each value of R there is a corresponding definite load factor. The

advantage of the concept of the load factor for the characteristics of the mis-

sile's maneuverability consists of the fact that the strength of the missile

frame and of its other component parts is determined precisely by the load factor.

The proper operation of the control system is also checked at the allowable load
factor.

In the case when flight takes place along a circle, it is easy to go from

radius R to the load factor along the zI axis. Indeed, when the missile flies

along a circle, it is subjected to a lateral acceleration

• 2

(i0.22)
R.

If we divide the right and left sides of (10.22) by the acceleration due

to gravity g and substitute the value of R from (10.20), we obtain

Expression (10.23) makes it possible for us to arrive at important conclu-

sions concerning the effect of missile parameters and flight parameters on the

load factor and, consequently, on the maneuverability of the missile. The load

factor for a given slip angle _st depends on the square of the flight velocity,

while for large velocities it may reach values which are inadmissable if we con-

sider the strength and proper operation of the control system. Therefore, in

such cases it is necessary to limit the allowable values of _st' by some method.

On the other hand, load factors decrease when the flight altitude increases (due

to pe), and at high altitudes the maneuverability of the missile may become in-

sufficient. An increase in _ is permissible only up to values at which the
st

uniform flow around the missile is disrupted. Finally, the smaller the specific

load on the wing, the greater is the possible value of the load factor when all

other conditions are equal. From this point of view it is desirable to have

wings with large areas, but this is difficult to realize because it increases

the size of the missile. As a rule, for small missiles it is easier to provide
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Figure 10.4. Graphs of usable load factor.

for low specific wing loading, and it is for this reason that the maneuver-

ability of small missiles is better than the maneuverability of large missiles.

If, in equation (10.23), instead of _st we substitute the value _m' the

maximum permissible slip angle for which the flow is not disrupted, we obtain

the limiting load factor which characterizes the maneuverability of the missile.

The graphs showing the variation in the usable load factor n as a function of
zp

velocity for various flight altitudes are shown in figure 10.4. These graphs

illustrate the conclusions made earlier concerning the effect of velocity and

flight altitude on the maneuverability of a missile.

As we have already pointed out, the analysis in this section is made

under the assumption that the flight velocity of the missile is constant dur-

ing maneuvering, produced by the deflection of the control surface. In spite

of this, the results which we have obtained are significant, even for mis-

siles whose flight velocity is variable. Actually, the control surface of a

missile is displaced continuouslyj and the missile does not have circular

regions of trajectory for any extensive distance. If we consider the contin-

uous slow motion of the control surface as a series of small intermittent

changes following in short intervals, the velocity of the missile will not vary

appreciably during the period of one interval. Consequently, for each interval

the results of the analysis will be approximately correct.

Section 10.3. Longitudinal Motion of a Missile When the

Control Surface is Deflected

In the investigation of isolated longitudinal motion, missiles with plane

wings and missiles with nonrotating cruciform wings are under identical condi-

tions: both have wings situated in the plane perpendicular to the trajectory

plane. Therefore, the results presented in this section may be extended to

both types of missiles. Let us assume that a missile moving uniformly and in a

straight line has an elevator which is deflected by some angle. Obviously, in
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this case the trajectory of the missile will become distorted. For the case of

curvilinear longitudinal motion, the projections of the force of gravity on the

x and y coordinate axes change constantly. This causes a variation in the flight

velocity of the missile, as a result of which, in some cases, the missile again

enters a rectilinear trajectory with a new slope with respect to the horizon.

However, the process of establishing a new flight velocity takes a rather long

time, and if we consider the initial reaction of the missile to the deflection

of the control surface, we can neglect the effect of the missile's weight as

well as the effect of velocity change and flight altitude over this segment of

the trajectory.

With these limitations we analyze the variations in the angles of attack

A_ and in the slope of the trajec-ory Ae, which take place when the elevator

is suddenly displaced. We use the system of equations(8.31) which was derived

taking into account this limitation (AV = b =0). In this manner we obtain the
e

following differential equation

• • d2A_ da_•,7 + (b=+ca +c_ ) -2?- + (b,c_,-#:j_. = c,_%;
• .]. : ,

at, + (b.+ c; ± c_;=_- . , d--7 b=c_A6t.

Comparing equations (10.24) and (10.25) for longitudinal motion with anal-

ogous equations (i0.I) and (10.2) for lateral motion we note their complete

equivalence. The role of the slip angle is now played by the angle of attack

of the missile, while the angular displacement of the trajectory is now the

slope of the trajectory. All the conclusions made in the preceding section for

lateral motion are applicable to the case of longitudinal motion, if, of course,

we consider this motion under assumptions made at the beginning of the section.

Therefore, without repeating the analysis carried out in section 10.2 we present

only the equations for the steady state value of the variation in the angle of

attack, in the natural frequency and in the damping of longitudinal motion of

the missile with respect to its center of gravity, when the elevator is de-
flected

• . • - mZ .

•A_ st= -- A8 t;

• ' 2 " 1' .'

(m:+ ]
¢_--=

' I" --'-i7\: 2m . . .

(lO.24)

(i0.25)

(lO.26)

(i0.27)

(lO.28)

/3oo
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Section 10.4. Lateral Movement of a Tilted Missile

with Plane Wings

To change the trajectory of the missile in the xoz plane_ it is necessary
g

to produce a control force lying in this plane. If the course rudder of a mis-

sile with plane wings produces a slip angle, the lateral force is too small and

the maneuverability of the missileis entirely unsatisfactory. This is explained

by the fact that in a missile with plane wings there are no wings in the xloY I

plane. Therefore, when slip is present, the lateral force is produced only due

to the dissymmetry of the flow around the frame, and it is for this reason that

the lateral force is small. To obtain a more substantial lateral force, the

component of the lift Y is utilized. This component is obtained when the mis-

sile is tilted as shown in figure 10.5. Let us consider the simplest case when

the turning maneuver is properly executed. In such a maneuver, the altitude,

velocity and angle of tilt remain constant and slipping is absent, To make a

proper turn, the missile must be given a definite tilt, and its angle of attack

must be increased so that the vertical component of the lift force Y cos y re-

mains equal to the weight.

Yeast_ y I

tb -!

Figure 10.5. Forces acting on missile with plane

wings during properly executed turn.

Let us find the basic par_ncters which characterize the motion of the mis-

sile when executing a proper ttwn. We write the equations for the center of

gravity of the missile_ using the axes of a natural trihedron: tangent, normal

and binormal to the flight trajectory. Assuming that the velocity and flight

altitude are constant 3 we obtain (on the basis of figure 10.5)

O_P_X;

0 = Ycos'_- 6;

• dt

(10.29)

where y is the tilt angle during the turn, and 0b is the angular displacement of
the trajectory.
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In a proper turn slip angle is equal to zero and the turn angle of the tra-

jectory 8b coincides with yaw angle 4"

The first equation of (10.29) establishes the relation between the drag

and the thrust which must be maintained so that the velocity during the turn is

constant. Drag increases with the angle of attack because the lift force co-

efficient during turning must be increased compared with its value during rec-

tilinear flight. From the second equation of (10.29) we obtain the following

equation

= c--i_v_- (10.30)
• CYt cos "I'

where c and c , are the lift coefficients during turning and during straight
Yt Yr

flight, respectively.

The relation between the angles of attack during turning and during recti-

linear flight will be approximately the same as given by equation (10.30).

The normal load factor also increases with the tilt angle during the proper

turning maneuver. From the second equation of (10.29) we obtain

,z_=.--I • (10.31)
• ¢os][

Combining the second and third equations of (10.29) we find an expression

for the angular velocity and the radius of a proper turn

(10.32)

]_ Vs .

When the tilt angles are small (7ma x = 20-25°), it is permissible to take

the direct value of the angle y in equations (10.32) and (10.33) instead of tan
y'

when carrying out approximate evaluations. It follows from expressions(10.32) and

(10.33) that the maneuverability of a missile with plane wings can be increased

by taking a turn with a large tilt angle. However, it is impossible to bring the

tilt angle close to 90o for the following two reasons. In the first place, when

the tilt angles are large, there is an increase in c , as we can see from expres-

sion (10.30). The increase in this coefficient is limited by some value Cy(allow -

able)' which is 10-15 percent less than Cy max under given flight conditions. This

limitation is associated with the break in the flow which takes place at critical
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angles of attack. In the second place, it follows from equation (10.31) that

the increase in the tilt angle is associated with an increase in the normal load

factor_ which may also be limited by some value.

Let us see how we must control the tilt angle necessary to maneuver the mis-

sile in the xoz plane. Obviously, in this case we must have an automatic pilot
g

to control the ailerons of the missile. Let us consider the problem of control-

ling the tilt angle independently, without associating the tilt motion with other

parameters of lateral motion (with the angles _, _, eb and the coordinate of the

center of gravity z ). In selecting the parameters of the automatic pilot for
g

the tilt channel this approach is quite justified_ since the variation in the

tilt angle of missiles takes place much more rapidly than the variation of the

other parameters mentioned before. Therefore, to select the parameters for con-

trolling the tilt angle we use equation (8.46)

(subscript e = aileron).

d*--L+ lidt*d--L="l_6 e"dt
(10.34)

Equation (10.34) shows that under the assumptions used to derive it, the

missile is neutral with respect to the tilt angle. For the control system we

use an ideal automatic pilot with fixed feedback or without feedback. The equa-

tion of an automatic pilot with fixed feedback for controlling the tilt angle has
the form

_ +
(10.35)

The equation of an automatic pilot without feedback is

• dt • -- ' ,_t---7-- --_ + qT (T_-- "0.
(io.36)

The following designations are used in equations (10.35) and (i0.36): Y3 =

_3(t) is the assigned value of the tilt angle which is physically determined by

some signal sent by the control system of the missile into the tilt channel of

the automatic pilot; and i._ i , q are transfer numbers of the automatic pilot
Y Y Y

for the respective signals having t!_e dimensions:

[_ l=sec; [_l _---I; [_1= I/see.

Combining equation (10.34) with equation (10.35) or (10.36) we obtain a

general equation for the tilt control system. For an automatic pilot with fixed
feedback we have
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.,-_- ÷ (/i + ii t_) _ + iTt_"_= ._.• ' e e
(10.37)

For an automatic pilot without feedback we have

"-_d'_; q- (l_ q-i_ l_e,] d2--J-_dt2 .qk ql_e _at+ q_t,_y = q_t_e._. (10.38)

Each of the coefficients in the left part of equations (10.37) and (10.38)

contains one of the transfer numbers of the automatic pilot. Therefore, it is

possible to select these coefficients in such a way that the dynamic character-

istics of the missile with respect to the tilt angle are optimum. In this case

it is convenient to apply the method of standard coefficients to select the

parameters of the automatic pilot. Let us illustrate this by specific examples.

Example i0.i. The parameters of the missile are as follows: i. = 0.5
Y

1/sec; 16e = 5 1/sec 2. It is required to select the transfer numbers of an auto-

matic pilot with fixed feedback in such a way that the control time for the tilt

angle (tp) (p = control) is equal to 1.5 sec.

The transfer function of the closed loop system is obtained from equation
(10.37) and has the form

• _16e

_;/T3 (p) (10. 39 )I

which corresponds to a typical transfer function (2.8). For this typical function

the standard coefficients are shown on tables 2.1 and 2.2. Let us use table 2.2

because in this case the control time is a minimum, and the small overcontrol

characteristic of these standard coefficients is not significant in the present

case. On the basis of table 2.2 the standard characteristic equation has the
form

p2 + 1.5QoP .q_o02= O. (io.4o)

If we set the coefficients of equation (10.37) or the denominator of func-

tion (10.39) equal to the coefficients of the standard equation (10.40)3 we

find two algebraic equations

l_ +i_ Q e = I/SQo;

_, iTQe= 002.

(i0.41)

(10.42)

On the basis of the graphs shown in figure 2.6 we obtain the value of the

dimensionless control time for the second order system T = 3. From this it
P
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Substituting this value of
0

tilt angle
:_ °o2 2,

.q"t, -5
e

follows that the natural frequency of the system must be equal to

1

tp -1.5 sec

into (i0.42) we obtain a transfer number for the

=0,8.

Finally, from equation (10.4) we determine the transfer number for the angular

rate of change of tilt

1,59 o -- I.
l. ----- T 1.5.2-- 0.5

1_e 5
= 0,5.

The transfer numbers of the automatic pilot selected in this way provide

for the required dynamic characteristics of the missile with respect to the tilt
channel.

Example 10.2. Let us assume that the missile parameters are the same as in

the preceding example. Let us select the transfer numbers of the automatic pilot

without feedback in such a way that the control time for the tilt angle (t) is
P

equal to 1.5 sec.

The transfer function for the closed loop system obtained from equation
(10.38) has the form

%t_e

*.,. =. + (% e
(10.43)

As in the preceding example, this function corresponds to the typical trans-
fer function (2.8). From table 2.2 we determine the standard characteristic

equation

_+ 2.5%p,+ 2,sQ_p-_ _= o. (lO.44)

If we set the coefficients of the polynomial in the denominator of function

(10.43) equal to the coefficients of the standard equation (10.44), we obtain a

system of three algebraic equations

l. "l_ =2.5_%. ]"_ +'T e

i_Q = 2.59oQ_,

q_Q = Oo3.
e

(lO.45)
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From the graphs shown in figure 2.6 we find the value of the dimensionless

control time for a third order system T = 4.5. From this it follows that the
P

natural frequency of the system mu_t be equal to

. '_p 4.8. I

,- tp t.8 sec

Substituting this value of _0 into system (10.45), we obtain the values of the

transfer numbers

t. = t.4sec;l r =4.5;.qT =8.4-!- 1
T . sec '

These values of the transfer numbers are very large, and if they are used,

the linear region of operation of the automatic pilot over the tilt channel is

sharply reduced. In some cases this may be undesirable. To decrease the trans-

fer numbers, it is necessary to increase the control time for the angle of tilt.

Thus, for example, if we let this time (tc) be equal to 3 secs after carrying
out the calculations in a similar fashion we obtain acceptable values for the

transfer numbers: i_ = 0.55 sec; i = 1.125; q = 0.675 i/sec.
Y Y

Section 10.5. Control of the Yaw Angle of a Missile

with Cruciform Wings

The tilted motion of a missile with a deflected control surface was con-

sidered in sections 10.2 - 10.4 to present a clear picture of these simple con-

trol maneuvers of a missile. Actually, the control system of a missile consists

of several circuits which, as a rule, cover the control surface elements and the

tilt control channel of the missile. Of these the simplest circuits are the

ones for controlling the angular position of the missile: the angle of yaw in

lateral motion and the pitch angle in longitudinal motion. In the present sec-

tion, we consider the circuit for controlling the angle of yaw of a missile with

cruciform wings. It is ass.umed in this analysis that the tilt angle of the mis-

sile is rigidly stabilized by a special channel of the automatic pilot, which

controls the ailerons and remains equalto zero during the entire flight period

of the missile. The method of selecting the parameters of an automatic pilot

for stabilizing the yaw angle does not differ in any way from the method pre-

sented in the preceding section for selecting the parameters of the automatic

pilot which controls the tilt angle. The automatic pilot which controls the tilt

angle will maintain this angle equal to zero, if we let Y3 = O.

To select the parameters of an automatic pilot which controls the yaw angle

of a missile with cruciform wings, it is necessary to analyze the system of

equations which describe the motion of the controlled object and the operation of

the automatic pilot. To describe the controlled object--the missile with cruci-

form wings--we make use of the first two equations of system (8.44)
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a¢ d_ r I"

- =o;

at" v dt = n6cr 8cr ly

(10.46)

The right side of the second equation contains the perturbing moment M
P

(perturbing)' which takes into account the possible aerodynamic dissymmetry of

the missile with respect to the y axis caused by the dissymmetry of the frame or
1

of the thrust. In future calculations we shall assume that this moment is con-

stant. We do not consider the third equation of system (8.44), because it de-

scribes the motion of the center of gravity, and the automatic pilot, which con-

trols only the yaw angle of the missile, does not react to changes in the coordi-

nates of the center of gravity.

By eliminating the variable 8 from system (10.46) we obtain an equation

for the yaw angle of the missile

.9. =I'=a, _ -i-ai .=.=._t#.--- b,-_tc._ ---b,6c_ .I d_Mp 5- _ A/14
• . ly dt J.y

(10.47)

where

"at = k_ + n_ + n_, ]

a_ _- k_ n_ + n_, /• bl = t_ 8cr ,

b2 --- k_n 6cr"

(lO.48)

Of the various types of automatic pilots, the most common is the automatic

pilot with fixed feedback. Therefore, we shall analyze it first.

The ideal automatic pilot, with fixed feedback used for controlling the

angular movement of the missile, is usually described by the following equation

_%F -- i__ + t,_(_ -- 6,), (lO. 49 )

where _3 = $3 (t) is the assigned value of the missile's yaw angle, i.e., the

control signal; and i and i. are the transfer numbers of the automatic pilot

for the angle of yaw and for the angular rate of change of yaw which have the

following dimensions: [i@] = l; [i_]_ = sec.

Combining expressions (10.47) and (10.49) we obtain a general equation for

the control system

/3o7
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at-T "7# + (a2 + i+ b2 + 463 --_ + 462,_ =

.
¢

(lO.5O)

By analyzing the structure of equation (10.50) we can make certain significant

conclusions. This equation shows that from the standpoint of the control signal

_3(t) the system missile--automatic pilot with fixed feedback is astatic and, in

the steady state when perturbations are absent (AM = 0), we have $ = _ = const.
P 3

On the other hand, this system is static with respect to a constant perturbing

moment produced by aerodynamic dissymmetry. The error in the yaw angle produced

by this moment is equal to

¢st=k i (lO51)
jyi_b2 "

From the structure of equation (10.50) we can also see that the selection of

the automatic pilot parameters (i_ and i@) cannot be carried out conveniently by

the method of standard coefficients_ because the number of variable automatic

pilot parameters is equal to t_o, while the number of coefficients in the equa-l
_ tion to be selected is equal to three. Therefore_ to select these parameters

! it will be necessary to use both the method of standard coefficients and of

i the logarithmic amplitude--frequency characteristics.

In order to have a clear concept of the system which we are investigating

it is desirable to make up its functional diagram. On the basis of equation

(10.47), the transfer function for the ratio of the yaw angle to the angular

deflection of the control surface is written in the form

li _,#c_p) == p b,p -I- b_ (10.52)(P_"-t- a_p -i- a_) '

where the values of coefficients b
al' a2' i

(lO.48).

and b
2

are given by equation

The transfer function for the ratio of the yaw angle to the perturbing

moment AMp has the form

W_,_ _) -- b_p+ b2 i . (i0.53 )
" "p_+a_+,ag" n6 J

cry

For convenience in preparing the structural diagram, it is desirable that

the transfer functions of the missile be the same for both the controlling sig-

nal and the perturbing signal. To make these functions the same, it is nec-

essary to reduce the perturbation to the control surface, i.e., to replace &M

by a new perturbation measured inangular units and given by the expression P
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aFp=Wp(p) Zp. (Io.54)

By comparing (10.53) and (10.54) we see that the transfer function W (p)

P

must be equal to

The functional diagram of the system for controlling the yaw angle which

takes into account the equation of the automatic pilot (10.47) is shown in

figure 10.6. To select the first parameter, the transfer number for the angular

rate of yaw (i_), the functional diagram may be represented in the form shown in

figure 10.7. The perturbation AM is not shown, since it does not affect the
P

dynamic properties of the system _id does not enter into the picture when we

compute the parameters of the automatic pilot.

i
! .¢ ,

Figure 10.6. Functional diagram of yaw control system

using automatic pilot with fixed feedback.

Let us select a transfer number i_ from the condition that the transient
i

process in the inner circuit takes place in a minimum time (4 = 2_2/2). If we

consider this circuit independently, it represents the control process for the

angular rate of change of yaw.

form

The characteristic equation for the closed loop inner circuit has the

p_ + (a I + i._ bl) p q- a_ -t-- i+ ba = O.
(i0.56)

On the basis of equation (10.56) the relative damping is equal to

.= o_+ i._b_ . (zo.57)
---- .

2 I" a2 -P i_ b.,
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Figure 10.7. Transformed functional diagram of

figure 10.6, used to select parameters of auto-

matic pilot.

If we let _ = _ we find the required value of the transfer number i_ from

expression (10.57). For convenience we do not express this number in terms of

coefficients al, a2_ bI and b2, but rather in terms of the initial parameters of

the missile

I [V 2(n_-k_n_)-k2 ]!*= n _- (n_.+ n._) . (lO.58)
_. . 6cr _ ._ . .

After the selection of i_, the transfer function of the inner loop (fig.

10.7) is reduced to a normal form

T,_p + 2_T_,p-t- l
(io.59)

where

Now this functional diagram can be represented in the form shown in figure

10.8. As we have already mentioned in section 2.3_ in order to obtain a satis-

factory transfer function, it is necessary that the cutoff frequency occur over

the region of the logarithmic amplitude--frequency characteristics, which has a

slope of 20 db/sec. This is the criterion for selecting the total amplification

factor of the system i_k c and, consequently_ of the transfer number it, because

the value of k must be known.
c

Table i0.i shows the parameters of two missiles with different character-

istics. The assigned values are k , n , n_, n_ and n6 , while the remainingcr

parameters are computed by means of equations (10.48) and (10.60). The table
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Figure 10.8. Transformed f_ctional diagram of

figure I0.7.

also shows the values of the transfer number for the angular rate of change of

yaw (i_) computed by means of equation (10.57). The negative value of i@ for

missile No. i shows that the natural damping of the missile _is large, and to ob-

tain the optimum damping (_ =_) it is necessary to introduce negative damping

db

:20

10

0

-gO

L(,.

_,,_oi "-20

\ z •
I ._ * l l I_

o.o, o.1 zo o

• \ dec
• •

Figure 10.9. Logarithmic amplitude--frequency characteristics

of missiles whose parameters are shown in table i0.i.

artificially. Since a certain amount of increase in damping does not produce

much effect on the short period motion of the missile, in future calculations for

missile No. i we shall assume that i_ = 0.

Figure 10.9 shows the logarithmic amplitude-frequency characteristics for

both missiles. For missile No. i, i = 1.0 and for missile No. 2, i_ = 1.5. It

is undesirable to decrease the value of i@ because in this case the transient

process is prolonged. However_ an increase in this value leads to substantial
oscillations.

Figure i0.i0 shows the transient functions for the yaw angle. From these

graphs we can see that if the method of selecting the transfer number i for

missile No. i led to the desired result (rapid transient process with small
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TABLE I0.i. DYNAMIC CHARACTERISTICS OF MISSILES

Characteristic
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overshoot), the transient process for missile No. 2 becomes unsatisfactory. This

is explained by the fact that the third root of the characteristic polynomial of

differential equation (10.50) has turned out to be much smaller than the two

other complex roots. This value of the root is due to an excessively large

value of constant T V and small value of coefficient k . The transient process
C

for missile No. 2 is divided into two periods. The first period is determined

by the large complex roots and ends quickly. The second period is determined by

the small root and produces a long "tail" on the curve of the transient function.

This result shows that for certain types of missiles an automatic pilot using the

simplest law for controlling the yaw is unsuitable.

0 Z _ 6 8 I0 12 l_t.,

Figure i0.i0. Curves showing transient functions

of missiles whose parameters are presented in

table i0.i.

Let us consider the possibility of using an automatic pilot with fixed feed-

back and with integral control for missile No. 2. The control law for such an

automatic pilot may be written in the form

l

6cr =_i + a_.__f.k i,(%_9) + q* ] (%__9)d t (i0.61)
o

or in symbolic form
T '_p_ 1

6cr=--i%P} _-q*_(%--_)' (10.62)

where q_ is the integral transfer number for

ing a dimension [q_] = i/sec; and, T_ = i_/%.

the mismatch signal (_3 - _ )' hav-
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Figure i0.ii. Structural diagram of system for con-

trolling yaw with automatic pilot described by equa-

tion (10.61).

The functional diagram of the system for the automatic control of the yaw

angle using the integral law is shown in figure i0.ii. Since the functional

diagram in figure i0.ii contains an integrating element, the system has become

astatic with respect to the constant perturbation AM = const. The transfer func-
P

tion of a closed loop system which corresponds to this functional diagram and to

equations (10.46)of the missile and (i0.61) of the automatic pilot is given by

.... (Tvp'[-I)(T_p -'I-l)%b_ (10.63)•_,_/_ (p) =
p,+•(,,,÷ b,)+ + ,¢, + ,; + + q,b,)P+ q¢,."

The diagram in figure i0.ii shows the series connection of the "controlled

object, ,,i all of whose parameters are given and the equation of the "regulator"

(automatic pilot), whose parameters _, and i_ (or T ) must be selected. To

select these parameters, we use the method of logarithmic amplitude-frequency

characteristics. Figure 10.12 shows the logarithmic amplitude-frequency char-

acteristics of the "controlled object," of the "regulator" and of the compen-

sated system. The logarithmic amplitude-frequency characteristics of the

regulator are constructed in such a way that the cutoff frequency in the com-

pensated system is equal to unity (Wc = 1.0), while T_ = 0.555 sec. In this

case, the transfer numbers of the automatic pilot are equal to q_ = 2.6 i/sec;

iV = q T_ : 1.45.

The transient function for the control system of missile No. 2 is aline

in figure 10.3. If we compare it with the transient function shown in figure

i0.i0 for the automatic pilot with fixed feedback, we can see that by using

integral control we have been able to provide good dynamic properties when

controlling the angle of yaw of missile No. 2.

lln this case the parameters of the controlled object contain the transfer number

of the automatic pilot for the angular rate of change of yaw (i_), which deter-

mines the parameters T k and _ (equation (10.60)).
W C
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Figure 10.12. Logarithmic amplitude--frequency char-

acieristics of missile, of automatic pilot and of en-

tire control system. -.... logarithmic amplitude--fre-

quency characteristics of controlled object (missile);

-.,.-.-.logarithmic--amplitude--frequency character-

istics of regulator (automatic pilot); _ogarithmic

amplitude--frequency characteristics of system.
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Figure 10.13. Transient functions of systems whose

logarithmic amplitude--frequency characteristics are

shown in figure 10.12.

To control the angular position of the missile's frame (in this case the

yaw angle) we can also utilize an automatic pilot without feedback. In this

case, the control law must contain the second derivative of the angle, which

is controlled by the automatic pilot. In the case of the yaw angle, the con-

trol law for the automatic pilot has the form

• d_£ i$ d'_ . d+ (i0.64)aN- - -_T--L_7 + q_('_-9).

The designations of the transfer numbers are determined by their dimensions

[/$] == see; [i_,] = 1; [q._]---_ ]/see.

By combining the equation for the automatic pilot without feedback (10.64)
with the equation of the missile (10.47), we obtain the transfer function of the

closed loop system for controlling the angle of yaw.
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, "(Tvp Jr-1)qcb=. " "
•_+/_=09) = "P* "t"(at --_i_ b,) p' _ (a=+ i¢_, + i_ b,)p' --_(i¢b=-_-qcb,), -_-q¢b="

(10.65)

The difference between the transfer function (10.65) and the transfer func-

tion (10.63) is that the former does not have the term (T p + i) in the numera-

tor. The absence of this term produces some lag in the end of the turning tran-
sient process, as shown by the broken line in figure lO.13.

Section 10.6. Control of the Pitch Angle of a Missile

The analysis of the pitch angle control system (for a missile with plane

wings or cruciform wings) may be simplified and reduced to the problem considered

in the preceding section, concerning the control of yaw in a missile with cruci-

form wings.

Equations(8.31) are usually applicable for selecting the parameters of the

automatic pilot which controls the pitch angle. These equations describe approxi-
mately the longitudinal short period motion of the missile

d_8 dA,, " b,,A= == O; " ': " :" :'" /'' �

• dr' dt

AM
.... ..- =

(lO.66)

We introduce a perturbing moment AM in the rlght side of the second equa-
P

tion. This moment takes into account the possible aerodynamic dissymmetry of the

missile with respect to the zI axis.

By eliminating the variable A_, from (10.66) we obtain an equation for the
pitch angle of the missile

..._ii-+a,.-_--t-a,.-37.=b,d_-_t +b,&Sp+ i d--_'b'Ah_,
" "I _ dt t_ (lO 67)

where

a='= b=-t- c; -Fc_;

' a2 = b=c__ c,;

bi = ¢,,;
b== b=c_,.

(10.68)
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Comparing equation (10.67), which describes the variation of the pitch angle

during the longitudinal short period motion of the missile, with equation (10.47)

for the yaw angle of a missile with cruciform wings, we note that they are com-

pletely analogous. This reflects _he analogy between the lateral motion of a

missile with cruciform wings and the longitudinal motion of any missile with

wings. The coefficients al, a2, b I and b2 shown by equations (10.48) and (10.68)

also have exactly the same structure. Therefore, all of the equations, conclu-

sions and recommendations obtained in the preceding section for controlling the

yaw angle of a missile with cruciform wings may be utilized in the analysis of

the pitch angle control of a winged missile. In utilizing the equations of the

preceding section, it is necessary to replace the functions and parameters for

the lateral motion of a missile kith cruciform wings with the functions and

parameters of longitudinal motion by using the following table

In concluding this section we consider the control of the pitch angle taking

into account the force of gravity as it affects the angular motions of the mis-

sile. In this case, a system of equations which describes the short period

motions of the missile, has the form

" dt at .. .

dSa_ + C. &A_ dAa . p__. "
. . • at .t."

(!0.69)

This system differs from the system of (10.66) only by the presence of the

term b6Ae in the first equation. It is this term that takes into account the

effect of gravity because, from equation (8.27) b e = g sin ee/V e. During hori-

zontal flight e = sin e = 0. For small values of 0 the coefficient b is also
e e e e

small, but for substantial slopes of the trajectory it may have a significant
effect on the motion of the missile.

If we eliminate from system (10.69) all of the variables except A_, we ob-

tain an equation for the pitch angle which takes into account the force of

gravity

d'aA_ d2A_ dAO • , dA6"n', dAAf___:
dt----T-_- ax _ + a2 .-_- -_- a._±_ o __S_t_ b2A_jp._ I

• I, at (10.70)

bG

l_ AMp_
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• a_=&-b_+..c a +c 6;

a2 = &c_ + c_ . bo (c a + c_ );

a3 -- b_c_;

•b_= c_;

ba = c, (b_--bG);
, .

(10.71)

Comparing equations (10.67) and (IO.70), we note that the latter contains

a term with a zero derivative of the pitch angle. When 8 > O, the coefficient
e

a3 < O, and when 8 < O, the coefficient a > 0. It follows from this that thee 3

missile will be unstable in any flight with a pitch angle (without a control sys-

tem). This result is explained by the fact that in the analysis of the short-

period motion, one of the equations of system (8.28) is dropped, and the flight

velocity is assumed to be constant. If we take into account the entire system

of equations for longitudinal motion, the stability of flight without a conZrol

system may not be disrupted during pitching (equations(8.37)).

Coefficients a and a will also vary as functions of the magnitude and sign
i 2

of the trajectory slope (due to the coefficient be) and may become negative under

some flight conditions (for example, when the velocity is low at launching).

Let us write the general equation for the pitch angle control system, using

an automatic pilot with fixed feedback. We combine equation (10.49) of the auto-

matic pilot and the equation of the missile (10.70) by replacing in the former

the parameters of lateral motion with the parameters of longitudinal motion,

taken from table 10.2. As a result we obtain the general equation

• • d{)a I dAMO "b6

= t_°l--_- + i°ba_a+ Jz dt " Jz" AMp"

(10.72)

The structure of the coefficients of equation (10.72) shows that the con-

trol system for the pitch angle which uses an automatic pilot with fixed feed-

back is static, if we take into account the force of gravity, not only with re-

spect to external perturbation (AMp), but also with respect to the assigned

value of the pitch angle. This value of the. pitch angle is processed by the con-

trol system with an error equal to

462 _. (10.73)
A_st= a3+ 4b_
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As the slope angle of the trajectory increases, bs, a3 and A_st also in-

crease. For horizontal flight a = b = 0, and the error A_ is also equal to
3 8 st

zero.

If we use an automatic pilot without feedback or with the integral control
law, the control system for the pitch angle becomesastatic in spite of the
force of gravity or the constant external perturbation AM.

Section 10.7. Control of a YawAngle of a Missile
with Plane Wings

It was pointed out in section 10.4 that the effective control of a missile
with plane wings in the xoz plane required tilt. In the samesection the basic

g
relationships characterizing flight with tilt were obtained; however, the dy-
namics of lateral curvilinear controlled motion wasnot considered. To analyze
these dynamics, it is necessary to combineequations for the lateral motion of a
plane-winged missile (8.42) with the equations of an automatic pilot for some
system. The system of equations which is obtained in this manner is quite com-
plex. Therefore, in selecting the transfer numbers of an automatic pilot, _t is
desirable to makecertain assumptions which simplify the problem.

Let us divide this problem into two problems not associated with each other:

(i) the stabilization (more accurately, the liquidation) of the slip _ugle
by meansof the course rudder;

(2) control of the yaw angle and stabilization of tilt by meansof ailerons.

In solving the first problem we use the first and second equations of (8.42),
neglecting in them the terms which contain the tilt angle and its derivatives. As
a result we obtain equations which describe the isolated motion with respect to
the Yl axis

dl • dt

_'_ + n¢ d._
• - cr cr 'dy

(10.74)

The second equation contains an external moment with respect to the Yl axis,

due to the aerodynamic dissymmetry of the missile. The equation of the auto-

matic pilot with fixed feedback designed to eliminate slipping has the form

6cy (io.75)
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• sisnal _sro-oor_ional to the ancaiar rate of change of the pitch a-ngLu

(? .t /4 +- \ ...... , -%1_i is un_ro_ucea un_o _he control law _o provide for _ne necessary du:.:k.-,-

,_,._...._ke sys_e-=

Ce.:.hlnt_=_S ecua_-ons (10.74) a:d (10.75), we find _he general equasion for
. . - . ....

_:_e ..s_sx±=sas=cn of _he skis sacgL by _ne _om__c pilot with fixed neg:.-;i.ve
-'_ec_-= ack.

-'ke strucv_re of equation (10.76) permits us to draw the following cc _-
0.. __US % GZ. S, :

(l) the transfer n'_:_bers of _he automatic pi!o_ csaa be best selected by
+"= rr_e_nod o= standard coefficients- oecause each coefficient has a tr_aer

::_-:_::%er which we are free _o control;

(2) the external E _÷--_ ............._e_:_ao. ._:;_._ produces a constant slip angle ::.:_i
%O

..a_ = _._.:-o._ (10.77)
st 4:, (%% + e. -/,_%.%.+ '_ _ ;

cr

,'_)_c when the mi _'" -- _--_e executes a %urn with a co_svant angular velocitj
cO/dt = conss, a co.s_n_ slip angie is produced equal to

• ' >-_:._ (10.78)•_., =_ % -'-% _:r d_

' P r._ -R f_n_ cr dt

!-f the last two situations arm significant for a specific type of missile,
to obtain a system astatic with respect to constant perturbation and _o the

turn with consssa___ sagular velocity, it is necessary to use an automatic pilot
wi_h fixed feedback _-__e with insegral control

I

e.+ _ (i0.79)
6 ==__i: .... "o I o,f

0

Co.,s:._:__o eouations (10.74) and (10.79), we find the general solution for the

stabilizaZion of the slip angle by the automatic pilot with integral control

• d__3 .
ss ' n_, ' i; n --= --' (%'G @ cz_+ i_,k_,z 6+ (k;, -r T
dt_ , $ dl2

cr cr

"T" :;,n 5or dt Tq;tz 6 _ = O.
or

+

(10.80)

.t."nen&q auton:atic piloS with integral control is used, the errors during

_ne s_eady s_a_e produced by the mon_en_ d'_ing turning with const_ut velocity
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are ec:.a! _o zero. The selection of the transfer numbers in the system described

%y _.-uation. _'!0.80) should be carried, out by the method of standard coefficierts

rsr _k_ reasons stated for equa_io:. (10.76).

Exs_mp!e 10.3. The given pare_:_eters of the missile are as follows: k : 0.08

i/see; _' = 3.2 i/see 2._ ; n = 0.i i/see; n6c r = 1.3 i/see 2. It is required _o use

_he _:e_kod of standard coefficients and determine the transfer numbers of the

automatic pilot with fixed feedback for the stabilization of the slip angle. Lhe

con_roi time (t) must be equal to 1.5 sec.
C

On +he basis of (10.76) the characteristic equation for this system b'ms the

_--n " k_n 6 + i_n 6 = O.p_+(%+_+_;_8 ) p+k_, _+% cr (lo.8i)
• V cr cr

The standard characteristic equation for this case (on the basis of table

2.2) will have the form

p_+ :.SQop+ _ = o. (io._%<-)

3y equating the coefficien:;s of equation (10.81) to the standard coo _:ients,

:e obtain two equations with two : :kno_ns

k_ + n}+ ,'_,_6 = l,soo. ]

' k_n; IR n,_+ i; hncr
.v . , _ 6cr + i_n 6 =_o 2.

• cr

(Io._,3)

From the graphs in figure 2.( :,;e find the value of the dimensionless 2cntrol

_ime v : 3 (for n = 2). From tki, it follows that the natural frequency of _he
C

system must be equal to

=' 3 1

": ! .5 "
c sec

Substituting this value of _ mad the numerical values of missile par_ne-:ers
0

into (10.$3) and solving this system with respect to i. and i , we obtain their

w<±ues i@: 2.1]see; i_::0.41.

The s_:e method can be used to select the transfer numbers of the automatic

oiloz with integral control.

After selecting the parameters of the system for stabilizing the slip a_gle

(the course radder channel), we can select the parameters for the system control-

ling the yaw angle and stabilizing the tilt angle (aileron channel). In this case
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we let _ = d_/dt = 0 in the system of equations for the lateral motion of a
plane-winged missile (8.42). As a result of this assumption we have the first
and second equation of this system to describe the controlled object. The third
equation drops out of the system_ while the fourth equation describing the mo-
tion of the center of gravity is not associated with the first three. Thus we
obtain

e.I,4% e'r /d_- 7/+ kF;= O;

/a'r + l_ d'r d.? _ l%6e + .

(lO.84)

In the right side of the second equation we introduce the external moment

with respect to the x axis, due to the aerodynamic dissymmetry of the missile.
i

The equation of the automatic pilot with fixed feedback designed to con-

trol the yaw angle by producing a tilt, has the form

: ( o.85)
e. _ dt -- tTT--t_

where i. is the transfer number for the angular rate of change of tilt; i is
Y Y

the transfer number for the tilt angle; and i is the transfer number of the

mismatch in the yaw angle to the ailerons (cross coupling).

The introduction into the control law (10.85) of a signal for the tilt angle

is due to the necessity of stabilizing this angle at the zero value when other

signals are absent. The signal for the angular rate of change of the tilt is in-

troduced to improve the tilt motion. Finally, the signal (,3(t) - @) is the mis-

match signal in the control system for the yaw angle. The negative sign of this

angle is necessary because of the coupling between tilt and yaw: to turn the

missile over a positive yaw angle (to the left), it is necessary to produce a

negative tilt (tilt of the left wing).

Combining equations (10.84) and (I0.85)_ we obtain the general equations for

the system which controls the yaw angle and stabilizes thepitch angle by

means of an automatic pilot with fixed feedback

--#_'dt3 + (l_ ,aeli q_ i i l_ _d_'b "+ (__ k.¢l_, -'r i_la#-i._l_, e) "_d_"t-

e t_%t_ e d--t- @'
k

Yx dt _ J:_ "

(io.86)

Each of the coefficients of equation (10.86) has one of the transfer numbers

of the automatic pilot which does not enter into the other coefficients. There-

fore, to seZect the values of these transfer numbers, it is rational to utilize

the method of standard coefficients. To determine the natural frequency of the

present system for controlling the yaw angle of a missile, it is desirable to use
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!
the following approximate data: the time of additional turn must be 5-15 see,
and it increases with the dimensions and weight of the missile. To provide a
short time for the additional turns, they must be carried out with substantial
tilts. Therefore, the transfer ratio from the yaw angle to the pitch angle
must be 5-10. To satisfy this requirement, it is necessary that the ratio of
the transfer numbers i_/iy be within these samelimits.

It follows from equation (10.66) that the automatic pilot with fixed feed-
back does not provide for astaticism whenthe external momentis present and
whenthe turn is properly executed. If these shortcomings are substantial for
a given missile, as in the case of slip angle stabilization, it is necessary to
introduce a signal into the control law of the automatic pilot proportional to
the integral of the yaw angle. In this case, to select the parameters of the
control system we can use the method of standard coefficients.

Section 10.8. Control of Motion with Respect to the Center of
Gravity of a Missile with Variable Velocity

Every missile, when it is launched, changes its velocity from zero to a
nominal or maximumvalue during a rather short period of time (units or tens of
sec). For certain types of missiles (ballistic missiles) the final stage of re-
tarded motion is very significant. This motion occurs after the missile has
traveled at a very high altitude and enters the lower, denser layers of the
atmosphere. Therefore, the analysis of missile motion with variable velocity
is of definite interest.

The method of grouping the motions, which makes it possible in a given case
to investigate the motion of a missile with variable velocity, is presented in
sections 8.6 and 8.7. Here we consider the application of this method to the
calculation of angular motions of guided missiles traveling with variable veloc-
ity. The lateral motion of a missile with cruciform wings stabilized with re-
spect to its angle of tilt is described by the simplest equations.

To investigate the angular motion of a missile, we should take the first
two equations of (8.56)

dt dt m --_-_ ==-0;

d2_ .7_ l_ -" l2 pV d_ m_Sl pV2Jy - m/S pV s2 2 dt y 2 2 7

r-- m_Sl PV276cr

(10.87)

iWe have in mind the additional turn by an angle such that the system does not

depart from the state where its elements are linear.
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First let us analyze the effect of missile velocity variation on the nature
of the short period motion of the missile without a control system. This problem
is of interest for several flight stages of the missile. For example, when a
missile is launched with solid fuel boosters, the control system is sometimes not
turned on while these boosters operate, and the missile moves in an uncontrolled
manner. This is done because_ when accelerations are high, the control system
maynot operate with sufficient accuracy madalso because, at small velocities
which exist whenthe missile is accelerating, its control surfaces are not effec-
tive. Therefore, even if the control system is turned on, it has little effect
on the motion of the missile. Finally, along the terminal trajectory of a bal-
listic missile which slows down as it enters the denser layers of the atmosphere,
in most cases the missile is not controlled.

If we eliminate froml(10.87) the yaw angle, we obtain an equation for the
slip angle of the missile

,.j. 4 + s 2 2 + '4 s 2 2 +
• .

2 4 -2 -.-2-

' " • "='4 sl
. . 7 6 or"

(lO.88)

When a term appears in the coefficient for a zero derivative, depending on

the acceleration and not on the velocity, this signifies that the thrust of the

missile directed along the longitudinal axis has an effect on the lateral motion.

When a slip angle occurs, this thrust produces a component perpendicular to the

flight velocity, which tends to make the velocity vector coincide with the lon-

gitudinal axis of the missile.

Equation (10.88) is a linear nonstationary equation of the second order and,

strictly speaking, it is impossible to evaluate the stability of the process

from the coefficients of this equation. In addition, the very concept of stability
(more precisely, asymptotic stability) in the sense in which it was understood for

stationary linear systems also turns out to be unsuitable. Here we must speak

of the stability during the terminal interval of time t(< t _ tl). If, during

the interval t(0 < t _ tl) , angle _ and its derivative decrease in such a way that

at the end of the interval they attain specified low values, the system is con-

sidered to be stable over the termiual interval. In the contrary case, the sys-

tem is unstable. If the entire process of missile motion is contained within the

lit is necessary to bear in mind that when variables are eliminated from the con-

trol system with variable coefficients we cannot use the symbolic or operator

methods because they are not applicable to such equations. In addition, in ob-

taining equation (10.88), the mass of the missile was considered to be constant.
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interval 0 - tl, the stability in the conventional sense_ i.e._ stability over

an infinite interval_ has no meaning. The stability of the solution of equa-
tion (10.88) over the terminal interval is subject to analysis in the case when
the velocity does not change too r_pidly and whenthe method of fixed and quasi-
fixed coefficients described in section 2.4 can be applied. To apply this
method, it is necessary to know the law for the variation of the flight velocity.

Let us assumethat during a certain interval of time the motion of the mis-
sile takes place with equal acceleration or equal deceleration, i.e.,

v =vo±_. (i0.89)

To obtain a more convenient form of this equation_ we shall assume that in

equation (10.89) the sign before the second term refers to the time t, r_ohe_

than to the acceleration j. In this case (10.89) may be represented in the form

V=j"(t0+ 0, (i0.90)

where tO = VO/j is a substantially positive quantity.

The plus sign in the brackets pertains to acceleration_ while the minus sign

pertains to deceleration. In addition_ the bracket as a whole cannot become

negative. The second assumption means that over this region of time we neglect

the variation in time of all the other characteristics of the missile (J , m)
Y

and of the atmosphere (p).

Substituting the value of V into equation (10.88) we obtain

(kO.91)

Generally speaking_ equation (10.91) may be integrated by means of power

series. ! However_ the form of such a solution is insufficiently illustrative,

and to obtain purely qualitative results we use the method of fixed and quasi-

fixed coefficients. Let us write equation (10.91) in a more compact form

'-_-1-" a, (to :1:t) _ + [a2(to :t:t)' + aal# = b(io +---t)26cr ,
(10.92)

iv. I. Smirnov. A Course in Higher Mathematics, Gostekhizdat, 1948.
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where

., -s-_ 4 +",°'7 +4 ,

_-" .2:y (--_ 2"my_'ys4 y]

• sY _,s p� • =.,_sl Pj`
• aa'_m _2 ' "b _-_y.

We note that coefficientsal; _- and b_ are positive for any missile (c_,
- _ 3 _ z

wy m E are negative), while the coefficient a2 for a statically stable missilem ,

Y Y

(mE < o).
a

To go from equation (10.92) to the equation with fixed coefficients, it is

sufficient to let: t = O; tO = VO/j = const. As a result, from (10.92) we ob-

tain

d_

_-ZY+ _,,o@ + (_tg+ _,)_= btg_or" (10.93)

From equation (10.93) we obtain a formula for the natural frequency and for

the relative damping of the missile

+
= alto

2 Va2tg -{-a3 .

(10.94)

it follows from equation (10.94) that for very small flight velocities

(V0 0 and t _ O) the damping of the missile's motion tends to zero ({ _ O)0

Equation (10.93) describes the motion of the missile without a control system.

• However, at small flight velocities the control system using conventional aero-

dynamic control surfaces cannot control the missile, because the moment pro-

duced by the control surface M 6 = bt 2 06cr has an insignificant value. There-

fore, the conclusions which we have reached retain their validity for missiles

with a control system over the initial region of acceleration.

As the flight velocity increases, a2t20 becomes much greater than a and,
3

therefore, from equation (10.94) we obtain
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(10.95)

Expression (10.95) showsthat the natural frequency _ will increase with
0

time and, consequently, with an increase in flight velocity, whereas the rela-
tive damping _ does not depend on these arguments. The opposite picture takes
place whenthe flight velocity is decreased, because in this case the value t

0
V /j will decrease.
0

If we analyze the motion of the missile described by equations with vari-

able coefficients and use the method of quasistationary coefficients, we shall

obtain, by using table 2.6, from equation (10.92)

( azt0 ) d} (10.96)d'_k + o,t0+-- 7F + +a3) = cr.
dr2 a2t _ + a3 j

Comparing equations (10.93) and _0.96), we note that the effect of flight

acceleration taken into account in the first approximation, as permitted by the

method of quasifixed coefficients, has led to the appearance of an auxiliary

a2to/(t02 + a3) in the damping coefficient. The plus sign refers to ac-term_

ceierated motion of the missile, v:hile the minus sign refers to decelerated motion

of the missile. This auxiliary te:_ increases damping during acceleration and

decreases iz during deceleration. Its value first increases from zero and then

decreases when tO increases, i.e., when the velocity VO increases. At high

flight velocities, the effect of this term becomes insignificant.

To Show how the analysis is complicated if we take into account the varia-

tion of the flight velocity, we cow.sider the system for controlling the yaw angle

of a missile with cruciform wings, which uses an automatic pilot with fixed feed-

back. Combining the equations of the missile (10.87) and of the automatic pilot

(10.49), we find the general equation for the yaw angle control system

+(i¢'+"0 +=
.. d+._

(1o.<}7)

The resemblance of expression (10.97) to equation (10.50) considered in

section 10.5 is purely external. This becomes obvious if we compare the values

of the coefficients of equation (10.50) given by equations (10.48) with the co-

efficients of equation (10.97) shown below
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a, = -- "-_y 4 m ' S 2 4 "_ +

_. pV 2
bA= m s .._t_ ;

pV pV 2l,,==,4sl-=;- o

(:10.98)

As in the Preceding problems of the present section, the mass of the mis-

sile was considered to be constant in the derivation of equation (10.97). If

we had taken into account the variation in the mass of the missile, it would

have produced a further complication of equations (10.98). However, in the

present case, equations (10.98) for the coefficients of equation (10.97) have

turned out to be so complex that they do not even lend themselves to qualitative
analysis.

Therefore, the rational path for selecting the transfer numbers of an auto-

matic pilot in this system consists of the following. Since the characteristics

of the missile and the variation of velocity with time must be known beforehand,

after they are introduced into equation (10.97) we obtain specific values of its

coefficients. Then, by using fixed or quasifixed coefficients, we must use the

method of standard coefficients or the logarithmic amplitude-frequency chsr-

acteristics to determine the optimism value of the transfer numbers for several

flight conditions. Having selected some average value, we should check to see

what the dynamic properties of the missile will be under different flight con-

ditions. If it becomes impossible to use the same transfer numbers of the

automatic pilot and provide for the necessary properties of the missile under

different flight conditions, we should seek the technical possibility of chang-

ing these numbers in the course of the flight into functions of velocity, ve-

locity head or, more simply, into :_uctions of time.

The material presented in this paragraph pertains to the lateral motion of

a missile. However, the considerations and recommendations made here are valid

for longitudinal motion.

Section 10.9. Control of the Tilt Angle of a Missile by Means

of Relay Automatic Pilots

As a first example, showing the application of a relay automatic pilot,
we shall consider a system for stabilizing the angle of tilt of a missile. The

simplified schematic of an automatic pilot is shown in figure 10.14. The entire

device consists of a block of gyroscopes and a pair of spoilers for tilt con-

trol. The spoilers may be situated on the lift surfaces of the missile. The

314



• , a /'_-_ "_

Figure 10.24. Electrokinematic diagram of relay

automatic pilot, l--position gyroscope; 2--brush;

3--disk; 4--damping gyroscope; 5--spoilers.

spoilers are extended in opposite directions and produce a rotating moment of

either sign with respect to the longitudinal axis of the missile. The block

of gyroscopes consists of a position gyroscope i and a damping gyroscope 4. The

axes of rotation of both gyroscopes are both normal, with respect to the longi-

tudinal axis of the missile. The axis of the external frame of gyroscope i has

brushes 2 which slide along the contact disk 3_ which has two current-carrying

sectors. The contact disk is connected to the frame of the missile. In addi-

tion, it may be rotated with respec_ to the frame of the missile through the

lever transmission by the damping gyroscope. When the missile rotates with

respect to its longitudinal axis, the sliding contacts associated with the ex-

ternal frame of the gyroscope remain fixed. The contact disk_ on the other

hand, turns together with the missile. As a result, one of the segments of the

disk falls under the sliding contact and switches on the windings of the spoiler

electromagnets 5. This causes the spoiler to move out in such a way that the

moment which it produces rotates the missile towards its original position and

eliminates tilt angle Y" The damping gyroscope rotates the contact disk by an

angle proportional to the angular velocity of rotation of the missile around

its longitudinal axis (_ = dT/dt ). If the missile returns to its initial posi-

tion under the action of the spoilers_ the disk undergoes an additional rota-

tion towards the sliding contacts.

/327

Let us consider the motion of the missile around the longitudinal axis, when

it is subjected to a moment developed by the spoilers which control the tilt

angle. If, for some reason or other, the tilt becomes different from zero, the

motion of the missile may be described with a sufficient degree of accuracy by

the following equation

J'--_---- " dg = (10.99)
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where J is the momentof inertia of the missile with respect to its longitu-x
dinal axis; Ma_x is the aerodynamic damping moment; and M is the moment pro-

x x

duced by the tilt spoilers.

The absolute value of the moml,n_ developed by the spoilers is a constant

quantity, i.e.,

b4'/._[= "_._m= const.

If we take into account the variation in flight velocity and altitude, the

quantities M_x and M are variables. However, the variation in these quantities
x xm

during the flight of the missile takes place at a much slower rate than the

occurrence of transient processes associated with the stabilization of the mis-

sile with respect to its longitudinal axis. Therefore, we shall consider ex-
pression (10.99) as an equation with constant coefficients.

First, let us consider the operation of the scheme shown in figure 10.14

without taking into account the damping gyroscope. In this case, contact disk

3 will be rigidly attached to the frame of the missile. If we assume that the

operating time of the spoiler electromagnets is equal to zero and that there is

no delay in the occurrence of the aerodyanmic moment, then, when there is a

change in the sign of the tilt angle, there is an instantaneous change in the

sign of the moment produced by the spoilers. Then, similar to (2.66),

M._= --M_ sign (0. (i0.i00)

The minus sign in the right side shows that the moment developed bythe

spoilers always tends to decrease the tilt angle. Combining (10.99) and

(i0.i00), we find the equation for the system controlling the position of the

missile with respect to its longitudinal axis

j._. an'_ + . dy
• dta MxX --_ q-M_m sign(_)= O.

(i0.i01)

The expression we obtained is analogous to equation (2.70), which was con-

sidered in section 2.6. If we assume that the switching of spoilers cannot take

place instantaneously, the last term in equation (i0.i01) will be delayed, and
the equation will be written in the following form

_t_ x __ + M._ O.Ya , M_ dt signt3('I) =
(lO.iO2)

Introducing such new variables as the relative magnitude of the tilt
angle
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o)

l_ xx
the dimensionless time "r=t.--.

Jx

o)

MxX

and the dimensionless delay time ar=ta--_,

 ed oe equation (10.102)to form (2.SO)

we

L eT,
(i0.103)

As sho_.m in section _0.6, o_c_i a relay system with delay will always undergo

self-sustained oscillations whose a_@litude may become too large and whose fre-

quency may become too low, making the system inoperative. To eliminate self-

sustained oscillations in the system, a compensating device is used, which has

the form of a damping gyroscope 4 _fzg.'" 10.14), which turns the contact disk by

an aaditionai angle proportional _c the angular velocity of rotation of the mis-

si_e.

The equation for the stabilization of the missile taking into account the

effect of the damping gyroscope will have the form

ji d_y '_ a';-L,w,.,_s ( +b d_ 1:0.
(lO.lO%)

By introducing relative units_ we reduce this equation to equation (2.97)

considered in section 2.5.

,,(y+;a,)=o.
(i0.i05)

All of the conclusions made during the analysis of equations (2.80) and

(2.97) are valid for the dynamics of the processes stabilizing the missile with

respec_ to its longitudinal axis.

By using the theory of relay systems presented in section 2.6, we can sub-

mit recor_endations for the selection of the characteristics of the damping

gyro when the structural-aerodynamic parameters of the missile_, MWx and M
X

are k_o_Tm. To obtain the most suitable transient process with a sufficiently

lo_c amplitude of oseillations_ it is necessary to select the coefficient of

rate feedback _ in accordance with equation (2.98). In the present case _ is

a dimensionless value of coefficient b in equation (10.104), i.e.,

• M: _

=by T
From _his it follows that

b=_ I..____ (i0.i06)
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Having selected the optimum value of _ on the basis of equation (2.98), we

obtain from equation (10.106) the basic characteristic of the _amping gyro-

scope--the angle of deviation of its moving system b per unit angular velocity

of rotation of the missile with respect to its longitudinal axis.

Example 10.4. The missile has the following specifications:

(i) the moment of inertia with respect to the longitudinal axis is J
X

31.4 kg x m2;

(2) the coefficient of aerodynamic damping is Mwx = 274 kg x m 2 sec-l;
x

(3) the maximum moment developed by the spoilers is M = 5880 j;
x_

(4) the pick-up time of the spoiler electromagnet t = 4 x !0 -3 sec;
Pu

(5) the switching time of the spoilers (from one extreme position to the

other) t = 12 x 10 -3 sec.
switch

On the basis of these data we can determine the amplitude and the period

of self-sustained oscillations of a missile without a damping gyroscope. The

equivalent delay is equal to

s

= -=--_12.10 -3 = 10.10 -3 sec.
2

(subscript d = delay).

The delay in dimensionless units is equalto

_°

Mx "_ I0.10 -_

_'=-=tdJ_,- -- 31,_ .274 = 0.0875.

With this delay we use the curves _:ho_n in figure 2.37 to obtain
m

0.5; e = 2.0; 7m= 0.12. in units with dimensions:

= 0.480; l
e

(i) the period of oscillations of the missile with respect to the !ongitu-

Jx 31.4
dinal axis is equal to O-- = 202-_=0.228 see; (the frequency of self-sus-

tained oscillations is 3.6 cps.);

(2) the amplitude of oscillations of the tilt angle is equal to

- • JxMxm O. 12-31.4.5880
Y,a" -- -- = O. 294 radiu_ = 16.8 °.
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Onthe basis of expression (2.98) we select the basic characteristic o' _he
damping gyroscope

= 1 -- In 2.e-a _ = 1 -- In 2-e -0"°875 =- 0,365.

To obtain this value for the coefficient 4, we must have

b----_ J--'K--x=0.365. 31.4
" ,M _"x 274

, jg - .

=0.0417 see.

When AT = 0.0875 and _ = 0.365, we use the curves in figure 2.43 to find

the value of z = 0.015. The remaining parameters of the self-sustained oscilla-
2

tory process are determined from equations analogous to (2.82) -- (2.84)

z,_ = 1 -- (1 --_:) e-A" ,

._rn= In 1 --z2 (I -- _).
1-- za

a = 4 (a_ + z2).

Substituting the values for z and AT into these equations_ we obtain y
2 m

0.0055; 6 = 0.410 or in units with dimensions.

The period of oscillations is

J_ 3"I.4
0 " ==0,410.-------=0.0,107see;

Aq_x 274
X

and the amplitude of oscillations is

- JxMx,n .4. 5880
gm --0.0055 31

(M_.) 2 2742
-- -,57.3 = 0.77 -_=--45,5'.

Thus, the introduction of a dampinz gyroscope reduces the amplitude of the

oscillations to 46.5 angular minutes and increases the switching frequency of

the spoilers by almost a factor of 7. Obviously, such oscillations will have

no effect on the control of the missile, while oscillations with an angular

amplitude of 16.3 degrees and a frequency of 3.6 cps. must be considered in-
admissible.

The system which we have considered for the stabilization of the tilt angle

of the missile may also be used to control the tilt. For this purpose; brushes

2 (fig. 10.14) must also be coupled with a device which receives the command

signals for controlling the tilt, and which converts these signals into pro-

portional mechanical displacements of the brushes 2. In this case, the axis of

the external frame of the gyroscope and of the actuating roller must be con-

nected to a differential arrangeme:t.
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As a second example for the application of relay control, let us consider
the vibratory-linearized system for controlling the tilt of a missile. As be-
fore, we shall be concerned with a system operating with an electromagnetic
driver. The self-sustained oscillations will be dampedby using the vibratory
linearization produced by forced oscillations. The system for controlling the
tilt of a missile is shownin figure 10.15. It consists of the following:
position gyroscope iI_ contact disk i0, rigidly attached to the external frame
of the gyroscope, an electromagnetic relay 6, polarized relay 12 and spoilers
13 and 14. Onehalf of the contact disk is a conductor, while the other half
is an insulator. The axis of the external frame_ which contains the disk,
coincides with the longitudinal axis of the missile. Brushes 9-9 slide over
the contact disk and are used to connect the windings of a two-position relay
12. The controlling relay, by meansof its contacts, turns on the windings
of the electromagnetic tilt spoilers. The windings of the spoiler electro-
magnets are connected to the contacts of relay 12 in such a way that for any
position of its moveable contact the spoilers are displaced in opposite direc-
tions.

Whenthe brushes 9-9 rotate with respect to the disk i0, there will always
be a switching Of the spoilers and a discontinuous variation in the momentwhich
rotates the missile with respect to its longitudinal axis. If the brushes are
rigidly attached to the frame of the missile, then we have a tilt stabilization
system similar to the one considered before (fig. 10.14). To control the tilt,
a device is used rotating the brushes with respect to the frame of the missile.
This device is an electromagnetic relay, 6, whoseframe rotates the brushes,
9-9, through the given angle by meansof a pair of gears, 7 and 8. The moving
system of the electromagnetic relay has two coils, 5, which turn in the field
of the constant magnet 4, when current passes through them and overcomethe
restoring force of two spiral springs, 3. The neutral position of the moving
system of relay 6, and consequently of the brushes, corresponds to the zero
tilt angle of the missile. The windings of relay 6 are connected to the con-
tacts of the polarized relay 2 at the output of receiver I. The moveable con-
tact of this relay is switched at a frequency of 10-15 cps and alternately
switches in the windings of the electromagnetic relay.

If the control signal is equal to zero, both windings are fed with con-
stant voltage pulses of the sameduration. The moving system of the relay
will oscillate about its neutral position. If the control signal is different
from zero, the duration of the pulses in windings 5 will be different_ which
will produce someaverage momenton coil 5, proportional to the magnitude of
the control signal. This average momentwill rotate the moving system by an
angle at which it will be counterbalanced by the spiral springs 3- Thus, the
average angle of rotation of the relay's frame and of the brushes 9-9 turns
out to be proportional to the control signal. By turning the sliding contacts,
any tilt angle maybe imparted to the missile.

The moving system of relay 6 will always oscillate with the switching
frequency of relay 2 contacts. The oscillations will take place with respect
to the average angular position, which is assigned by the control signal. The
brushes 9-9 will also undergo angular oscillations with the samefrequency
and with a definite amplitude. A moving system of the electromagnetic relay

320



I 3

- I2

Figure 10.15. Electrokimematic schematic diagram of relay

automatic pilot with vikratory linearization. 1--receiver;

2--polarized relay; 3--spira! springs; 4--permanent magnet;

5--coils; 6--eiectromagnetic relay; 7 and 8--gear drive;

9--sliding contacts; lO--contact disk; ll--position gyro-

scope; 12--two-positioned relay; 13 and 14--spoilers.

is designed so that it has sufficient mass. The coils are wound on a copper

form, which produces a short-circuited turn and its motion in the magnetic

field is considerably damped. Due to this, the oscillations of the moving

system and of the sliding contacts near some average position are almost

sinusoidal when the exciting periodic moment has a rectangular form. The law

of motion of brushes 9-9, which are connected to the frame of the electro-

magnetic relay, may be written in the following form

'I' = @0(0 + _,_ sin,_t,

where _o(t) is the assigned law for the variation in the tilt angle; and _ and
m

w are the amplitude and frequency of oscillations of brushes 9-9 with respect

to the angle _o(t).

in this case _o(t) as well as the tilt angle y(t) must be slowly vary-

ing functions compared with _mSin wt. Equation (10.99), which described the

variation of the tilt angle of the missile; will also be valid in this case,

however, the moment M produced by the spoilers will be a function of the
x

mismatch _ = _0 - Y" If the relay and the electromagnets operate instanta-

neously; this relationship will have the following form

M.,.=_.,-,,,si_(_)_:M_.,,sig_[._,,,sino_t-_-_(t)__]. (10.107)
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Combining equations (10.99) and (10.107), we obtain an equation which de-
scribes the control process for the tilt angle of the missile

+ x *: (io.io8)
at2 d-7- = ,_I.,.,,,sign [,_,,, sin ,_t + % (0 -- "ft.

If, for simplicity, we assume that

_o (t) -- const =-O.

we can rewrite equation (10.108):

d-_y _ d7 (10.109)

Expression (10.109) shows that the argument :of the nonlinear function sign

contains a periodic component. Since y is a slowly varying function compared

with _m sin wt, it may be considered constant over several periods 2w/w.

The function sign n(y - @ sin wt) will be periodic only when lyl <
m m

The switching frequency of the spoilers w is usually selected so that it is

quite high (10-15 cps), so that the oscillations of the missile around the

longitudinal axis produced by the periodic component will have an insignificant

amplitude.

Thus, in this relay system linearization is accomplished by sinusoidal

oscillations. Consequently, in this case equation (2.105) is applicable

2
• K_----a[cs[n-- .

•- z _m

(i0.ii0)

The relationship K = K(y) is given by the graph in figure 2.47b.

are small

When Y/_m

2 !
K--

@_ _" (lO.ill)

Expression (i0.Iii) shows that the amplification factor of the relay

amplifier is equal to _i for slowly varying signals. If I el < 9m' we can
w _m

write the equation which describes the variation in the tilt angle when the

input signal _0(t) is variable

• --¢0(0.2 (10.112)
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Expression (lO.112) represents the equation for an oscillating member
• o

d'--/L+2{_0 e_ + a]_ = a]+. (0. (lO.113)
dt z dt

where

oo _ "_L,,, ]
= Jx+.,

2,_/ / _, +.,

(iO. 21_:.)

Expression (10.114) shows that the natural frequency of oscillations of

the system _0 is inversely proportional, while the degree of damping _ is

directly proportional to the squa/e root of _m"

In the region where I.'_0 - yi > @m, the tilt angle must be computed by

means of the following equation

d2_ M,_x d_ ± .&Ixm.
i_ _ + _ _t =

In this case the spoilers are completely extended in the same direction, and a

constant moment M acts on the missile. The _mplitude of the fundamental
xm

frequency of oscillations of the missile in the stationary state (¢ = O) may

be obtained as a specific solution of equation

6 _ +M_ _Y_ 4 M_sin_t. (20.215)
dt2 "dt

The solution of this equation gives us the unknown amplitude

(10.116)
4 " M.gnl "

: °V +P+
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2_
The frequency _ - must be selected in such a way that the _apli-

T I + T 2

tude of oscillations of the missile is insignificant. Linear equations for

describing the behavior of the system in the zone of spoiler vibrations were

obtained _nder the assumption that the delay is t3 = 0. As we stated in sec-

tion 2.6, for t3 = 0 and for a Z-type variation in the moment as a function
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of the tilt angle, self-sustalned oscillations will not take place in the sys-
tem. Actually 3 t 3 _ 03 and self-sustained oscillations will inevitably occur

in the system. However, if the input of the system is subjected to oscillations
_m sin wt of sufficiently high frequency and with an amplitude which provides

for reliable operation of the relay and of the electromagnets 3 the self-sustained
oscillations will be suppressed. Then, in the stationary state, the spoilers
will be switched with frequency m, and the oscillations of the missile with re-
spect to its longitudinal axis will take place with the samefrequency.

To suppress the self-sustains& oscillations, the frequency of the external
forced oscillations must be several times greater than the possible frequency
of self-sustained oscillations. The increase in the frequency of external
oscillations w is limited by the capability of all relay elements of the system
to reproduce this frequency. For example, electromagnets are capable of switch-
ing the spoilers with a frequency _ only if their operate time will be less

than the half period of oscillations t < _ The relay delay t has an
operate _ 3

insignificant effect on the nature of the transient process in the region of
proportionality; therefore 3 equation (10.112) remains approximately valid even
if we take into account delay t 3.

Example 10.5. Let us assumethat the following parameters of the missile
and of the control system are known:

(i) the momentof inertia j = 155 kg wt.m2;
x

(2) the coefficient for the momentof aerodynamic dampingM
xm

wt.m2 sec-l;

= 677 kg

(3) the maximummomentdeveloped by the spoilers, M = 2130 j;_Gn

(4) the delay introduced by the relay and the spoilers, 23-i0-3sec.

Let us determine the frequency and amplitude of the oscillations of the
missile with respect to its longitudinal axis, whenlinearizing oscillations
are absent. Whenthe relative delay is equal to

t3.3 . 34_,x __ 0.023
"At-= Jx " 155 -677----.0,I

we use the curves shown in figure 2.37 to determine

- I
y,, ---:O. 14 and -- :- 0,47.
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Thus the amplitudeof oscillations of the tilt angle is equal to

_m ----.Ym"Jx hiram 155.2130
M: u. NI:_ --0,14 677= . 57"3=5'8°'

and the frequency of oscillations is equal to

bl_ x _ 677 .0.47=2.13 cps.
OJz 155

Oscillations with this frequency and amplitude make it very difficult to
control the missile.

Now let us place the brushes into an oscillatory angular motion in accord-

ance with the law _ sin wt. Let us assume that the amplitude of the angular
m

oscillations is _m = 25o and that the frequency is f = w/2_ = l0 cps. Obviously,

in this case, self-sustained oscillations will be suppressed and the spoilers

will be switched with a frequency w.

The amplitude of the angular oscillations of the missile is determined

from equation (lO.116)

4 Mxm'57.3 4-2130-57.3
"KCO

1/&,'+ 155,.62.s,+.: 677,_0,2550.

The transient process during the adjustment of some assigned tilt angle

in the region of proportionality may be determined from equation (lO.113).

The degree of damping in the region of proportionality will be equal to

M: £ T¢ _,n _. 69 =.25 =0352.
_= " -2 2 IxMx,n 2 2.57.3.2130.155

The degree of damping turns out to be rather small and the transient

process when the tilt angle is adjusted in the region of proportionality will

have an oscillatory nature. We can increase _ by increasing _ However, in
m

order to obtain, for example, _ = 0.7, the amplitude of oscillations must be

raised to a value *m = 99o" This may be impossible to do. Therefore, we can

increase the damping by introducing a damping gyroscope into the control sys-

tem for the tilt angle.



Section 10.10. Self-Adaptlve Missile Guidance Systems

To stabilize the dynamic characteristics of guided missiles when flight
conditions change, it is possible to change the transfer characteristics of
the automatic pilot as a function of the velocity head. To achieve this,
the equipment aboard the missile must have meansfor measuring the velocity
head. With a given program for the unperturbed state, as in the case of the
active region of ballistic missiles, the transfer characteristics of an auto-
matic pilot may be varied with time. However, there is a more advancedmethod
of stabilizing the dynamic characteristics of guided missiles by meansof self-
adaptive systemsor by self-adaptive automatic pilots. Self-adaptive automatic
control systems may have:

(i) optimalizing compensating networks or transfer numbers of the auto-
matic pilot;

(2) a high amplification factor and nonlinear characteristics.

The functional diagram of the first system is shownin figure 10.16. In
addition to the regulator on the controlled object, the system includes an
analog (model) of the missile with the desired dynamic characteristics and an
optimalizing compensating network. The input of the system and of the model
with the transfer function W (p), in addition to the input signal x(t), is

a

also fed with a special test signal f (harmonic signal, sequence of pulses
test

or some other signal). The output of the model y and the output of the system
a

y are compared and a difference b is obtained. The signal b is fed to the

optimalizing system. The optimalizing system reacts on the parameters of the

compensating networks TI, T2, T3, T 4 and causes a search for the minimum of b

or for some of its functionalities. When bassumes a minimum value, the output

of the reference Ya is close to the output of the system y, i.e., the transfer

function of the system becomes close to the transfer function of the model,

which remains constant and is selected on the basis of the requirements for the

control system. Thus, there is an automatic approach of the dynamic properties

of the control system to the desired referance properties. The _est signal

ft is selected in such a way that its component at the output of the system

lies within allowable limits. When a random signal x(t), which also contains

a high frequency part of the spectrum, is applied continuously at the input,

it is possible to do away with the test signal.

An optimalizing system cannot instantaneously readjust the compensating

network when the parameters of the controlled object change suddenly. There

is a certain transient process of self-adaptatlon, whose duration is several

times greater than the transfer function of the model H (t). This is a dis-
a

advantage of the system and manifests itself when there is a sharp variation
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in the parameters of the controlled object (e.g., in the first seconds when a
ballistic missile is launched).

•_ 'w'_,(p)

--l cont olle .l'
I L-_bject J I

- . • .............. J

Figure i0.16. Functional diagram

of optimalizing system (a); with

compensating networks (b)_

.- . . , .

Figure 10.17. Functional diagrams

of systems which are invariant with

respect to properties of controlled

object.

The self-adaptive system of the second type is free from this defect. This

system uses some special features of a system with feedback containing an ampli-

fier with a very high amplification factor (infinity). This amplifier may be

a true physical unit or it may be produced by local positive feedback, which

occurs when the invariance principle is realized in automatic control systems.

Figure 10.17 shows three diagrams with feedback containing an amplifier wi_h

high gain. These three systems have the following transfer functions:

¢' Co)=

WoW_k Wo Wa
_)------ =Wa (fig. lO.17a),

. T+Wo

Wa W ok '.Ya WO

¢(P)-- l+W_Wo_ = I I --Wa. (fig. 10.17b),

• • _" -l- _VkWol

• W_ (fig. I0.17c).z_:

t + hv/o _ I

As we can see from these expressions, in all limiting cases the dynamic

properties of the system coincide with the dynamic properties of the model and

do not depend on the properties of the controlled object with transfer func-

tion W . In other words, the properties of the system as a whole are in-
0

variant with respect to the varying properties of the controlled object. Dif-

ficulties may arrive in systems a and c, associated with the stability of the
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system at high values of k. Therefore, the elements which form W0 must provide

for stability at high values of k. In system b, stability maybe achieved by
the proper selection of Wk.

As we know, infinite gain maybe achieved in relay automatic control sys-
tems under ideal conditions. 1 The ideal state is obtained with relay elements
which have characteristics shown in figures 10.18a and c. In the ideal state,
the element with characteristic a is switched, while the relay element with
characteristic c is turned on and off with an infinitely high frequency.
Actually, switching rates of infinite frequency cannot be realized because
a relay has someform of delay (electric, mechanical or electromechanical).
For a true relay, there is a true sliding state, and the switching of the re-
lay takes place with finite frequency. Whenperturbations are absent, this
state will coincide with the self-sustained oscillations near the equilibrium
position of the relay system. The smaller the relay delay_ the higher is the
frequency and the lower the amplitude of self-sustained oscillations and the
higher is the amplification factor k of the relay for slowly varying signals.
Whenthe relay characteristics are those shownin fi@_res lO.18b and d, only
real sliding states may occur. The relay delay is taken into account by in-
troducing, in series with the relay element, a transient (transport) delay with
the transfer functfon e-P_ where _ is the operate time of the relay. In this
case we should note the special features associated with the description of
the relay by the transfer function e-p_. All periodic solutions of the relay sys-
tem with frequencies greater than _/T are dropped, because they have no physical
meaning. The relay cannot be switched with a frequency greater than _/T.

Although the ideal sliding state as well as an infinite amplification
factor are not possible physically, these concepts may, nevertheless, be used
when synthesizing self-adaptive systems of the second type. Systems which
realize a large amplification factor by meansof a relay will be called non-
linear or relay self-adaptive systems.

Nowit is necessary to clarify the conditions under which a sliding
state maybe realized in a relay system. In other words, it is necessary
to determine the conditions in a closed loop relay system when the transfer
function input-output (fig. i0.19c) will be close to unity. The conditions
for the sliding state are close to the conditions for the stability of equi-
librium in a relay system. In its equilibrium state a relay with ideal char-
acteristics of the form shownin figure 10.19a oscillates at an infinite fre-
quency and has an amplification factor equal to infinity. Therefore, the
stability conditions of a relay system maybe obtained from the stability con-
ditions of a system with an infinite amplification factor.

IA. A. Krasovskiy and G. S. Pospelov, The Principles of Automation and Engi-
neering Cybernetics, Gosenergoizdat, 1962. Ya. Z. Tsypkin2 The Theory of
Relay Automatic Control System, Gostekhizdat, 1955.
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Before introducing the stability conditions for relay systems we introduce

the concept of a limit system. A limit system is formed from a relay system

when the relay element and the amplifier are replaced by an infinite amplifica-
tion factor.

As an example let us find the transfer functions of a limit system for

the output y using the input signal x(t) and a perturbation F(t) of a relay

system, whose structural diagram is shown in figure 10.19a (figures lO.19b

and d show the transformed functional diagrams).

For the input x(t) we have

k_V* [ Wl¢)x.(p) = ! -t- k (w, -F WJ k- - W,.+ _v, "

For the perturbation F(t)

icf_,)= w' (l + kwO _, I
: I+W, k l-l-k(W,+WJ ._--

l+kw_

"._-_8X

C

d _t-_a °
b " •

Figure 10.18. Characteristics of

relay element; P3 = relay element.

W=VG +_

Figure 10.19, Functional diagrams

with relay element.

Now let us determine the characteristic equation of the limit system. This

equation is obtained if we set the denominator of the transfer function equal to
zero

_+ k_v(p) =o, (10.117)

where

w (p)= w_(v)t- w,(p)-
Q (P) bo -t- blp -}'... + bmp r"

P(P) ao -F alp -[- ... -F a.p"

is the transfer function for the linear part of the system.

(lO.118)
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tion

From (10.117) and (10.118) we find two forms of the characteristic equa-

(io.119)

1

• =o. (io.12o)

When k - _, we obtain the characteristic equation of the limit system

Q (p)= O. (i0.121)

From expression (10.121) it follows that the limit system is stable, if all

the zeros of the transfer function for the linear part of the system W(p) lie to

the left of the imaginary axis of the complex plane. However, the stability of

the limit system is only one of the necessary conditions for the stability of

the system with high gain and for the stability of the relay system.

The degree of the characteristic equation (10.119) is equal to the de-

gree n of the polynomial P(p). At the same time, the degree of the character-

istic equation (10.121) of the limit system is equal to m < n. Thus, when

k _ _, n-m roots of (10.119) become infinite. It is important to establish

how these n-m roots will approach 'nfinity. If they approach infinity through

the left hemisphere, then, when the limit system is stable, the real system

will be stable for any large but finite k. If it approaches infinity through

the right hemisphere of the complex plane, the system will be unstable for

high values of k, even though the limit system is stable. A series of simple

criteria makes it possible to determine this condition. Thus, if the degree

P(P) is not higher than two, the system will be stable for any value of k,

no matter how large. Therefore, relay system may always be considered stable

if P(P) has a degree not greater than two.

By using an analogy with the amplitude-phase characteristics W(jw) of the

second degree system, we obtain recommendations for the form of the amplitude-

phase characteristics of the stable relay system of anydegree.

The relay system is stable if the amplitude-phase characteristics of the

linear part W(jw) occur in the lower semiplane and if its form is similar to

the hodograph W(jw) of a system not greater than the second degree. This

criterion is equivalent to the followingl: all of the zeros of W(p) must lie

in the left semiplane; the difference in n - m _ 2; when n - m 1 d > 0, while

for n - m = 2 dO > 0 and dI < O; here d O

in the expansion for W(p) in degrees p-l.

has the form

and dI are the first two _oefficients

This expansion of W(p) in a series

• W (p) = b° -5 bLp -5 ... -5 b,,p rn 1
ao + alp -5 ... _- _,:p" = p"-"; [d° -{- d,p-, -5 d_-= -{- ... ]; ( 10.122)

]
-Ya. Z. Tsypkin. The Theory of Relay Automatic Control Systems, Gostekhizdat,
1955.
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where

.aa

•dl= __2 [bm-,a.--a.-,bm].

(io.123)

(lo.124)

Since

..do=H(0), and d,=i_(0) when a--m=l and H(0)=0;

and do = H (0), and d,='/_"(0) when n --m = 2 and H (0)=/_ (0)= 0,

where H(t) is the transfer'function of the linear part, a third formulation of

the stability of the relay system occurs: the relay system must be stable and

the following conditions must be satisfied

fl(0)>0 when H(0) --0;

H(0)>0, }?'(0)<0 when H(0)----fl(0)----0.

The conditions for the existence of a continuous sliding state are more

rigid than the conditions for the stability of a relay system. The sliding

state takes place when we have a stable limit system and when n - m = 1 for

do > 0 or H(O) > 0 for H(0) = 0.

/340

After these remarks we can proceed with the design of a self-adaptive

automatic pilot. Figure 10.20 shows the relay scheme for controlling the pitch

angle. The relay controls a servomotor with isodromic feedback 3 whose trans-
fer function is

Tgpnu | kg _ Tgpnu I (i0.125)
Wg(p)--Tg_+, p p .kg.

U _ ZlO "

Figure 10.20. Functional diagram of self-

adaptive automatic pilot.
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The time constant TgI can be madesufficiently small and can be neglected.

The transfer function for the linear part of the relay system has the form

(Tgp + I) (Tfp -_ I) _k E
 vCo)=

(T_p__ 2_cTcp-_-I)p

(10.126)

As we can see from expression (10.126), the stability conditions for the

limit system are satisfied. The condition n - m = 3 - 2 = i is also satisfied.

Thus_ in the system represented in figure 10.20, we have a sliding state, and

&mpiification in the circuit for the angular velocity _ will be equal to unity.
z

These conditions are also satisfied for flight outside the atmosphere when the

transfer function for the angular velocity is equal to k /p. When the amplifica-
c

tion of the angular velocity circuit is equal to unity, the transfer function of

the closed loop system for the pitch angle assumes the form

ka (lO.127)

For the selected reference transfer function, the transfer properties of

the system are equivalent to the transfer properties of the oscillating ele-

men:. The coefficients k and T are selected in such a way that the natural
a a

frequency Ta and the damping coefficient _= 2_,'ka--_ have the desired values.

Since k and T refer to the properties of the model, the dynamic properties of
a a

_he system for controlling the pitch angle are fixed and independent of tie ly-
n_=.:ic properties of the missile. We should bear in mind that the conclusion

is valid when the amplification factor and the switching frequency of the re-

lay element are equal to infinity. Actually, the delay produced by the relay,

the unaccounted nonlinearities and dynamic elements with small parameter

values, e.g., Tg I in equation (10.125), lead to high frequency self-sustained

oscillations. The amplification f_ctor of the relay will be less than infinity,

and certain effects of the dynamir properties of the controlled object may af-

fect the d_u_amic properties of ti_<:e_tire system. This effect will be mac<i-

rested by the variation in the f_,_ uency and amplitude of oscillations due to

the chani_e in the properties of the controlled object. The frequency of self-

sustained oscillations must be sufficiently large and must exceed substantially

the resonance frequency of the controlled object I/T c = wO. At high frequenc?/,

the _mpiitude of oscillations of t! e angular velocity must be small and m_st

lie within the limits permitted _< the controlled object.
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A sufficiently high frequency of oscillations is achieved by meansof a
compensating network in the angular velocity loop of the missile. In this
case it turns out that the frequency of self-sustained oscillations is
practically independent of the properties of the missile, i.e., of coefficients
TV, k T and <c" The variation in the properties of the missile or in thec C

flight conditions changes only the amplitude of oscillations of the angular

velocity. In order that the amplitude of self-sustained oscillations be

stable for all flight conditions, a special amplitude stabilization loop is

formed (fig. 10.20). The output signal of the angular velocity is applied to

a bandpass filter with a transfer function.

where _ = 1/T is the frequency of self-sustained oscillations of the missile,

which remains practically constant for all flight conditions. After passing

through the bandpass filter, the signal is detected and compared with the

master signal u0. The difference &u = u0 - u causes the operation of a servo-

motor with transfer function kM/P, which changes the parameter B of the relay

system. By changing the magnitude of the master signal, u0, we may assign

the necessary value to the amplitude of self-sustained oscillations. Variable

gain amplifiers are also used in place of the relay element. The amplification

factor of the amplifier is changed by means of a servomotor, as shown in figure
10.20.

The application of anamplifier with a large and variable amplification

factor instead of a relay eliminates self-sustained oscillations completely,

and we can design a system which, under all conditions, will maintain a fixed

degree of stability in the angular velocity loop. A system with a given de-

gree of stability does not require the adjustment of the automatic pilot for

every type of missile to eliminate self-sustained oscillations. Obviously,

the transfer function for the angular velocity loop will not be equal to unity

in this case. However, the bandpass of this circuit will remain large and the

necessary invariance of the dynamic pitch angle loops with respect to flight
conditions will be retained.
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CHAPTERii. CONTROLOF THEMOTIONOFTHECENTEROF GRAVITYOFA
MISSILEWITHRESPECTTOA GIVENTRAJECTORY

Section ll.1. General Information

In somecases the guidance of a missile to its target is limited to the
assignment of a fixed trajectory passing through the target. Whena trajectory
is assigned, it is necessary to measurethe lateral displacement of the center
of gravity of a missile from this trajectory. As we have mentioned in Chapters
3-5, the trajectory maybe assigned by the equisignal zone of a radio beamand
by various methods of self-contained radio navigation. Regardless of the tech-
nical methods used to assign the trajectory and, consequently, regardless of
the methods used to measure the deviation of the missile from this trajectory,
a specific problem in dynamics occurs--the problem of automatically stabilizing
the center of gravity of the missile along the trajectory. It is necessary to
establish which signals must be introduced into the automatic pilot_ how these
signals must be transformed and how the transfer numbersof the automatic pilot
must be selected, so that the missile is returned to its trajectory as quickly
as possible.

The present chapter will consider the dynamic properties of the automatic
control system for maintaining the center of gravity of a missile on the as-
signed trajectory. As in the preceding chapters, the lateral and longitudinal
motions of the missile are considered separately.

Section 11.2 Control of the Center of Gravity of a Missile with
Cruciform Wings during Lateral Motion

Whenthe dynamics of the missile are complex, the selection of the control
system parameters is carried out i_ several stages. The complex multiloop
functional diagram of the system is divided into several simpler loops. This
division is not always possible. It can be madeonly after a very careful
study of the dynamic properties of the missile. It has been pointed out many
times in Chapter 8 that the motion of the missile with respect to its center
of gravity takes place muchmore rapidly (by a factor of 5-10)'than the motion /343

of the center of gravity. This situation makes it possible to select sepa-

rately the parameters of the automatic pilot for controlling the motion of the

center of gravity of the missile and for controlling motion with respect to

the center of gravity. The second problem is considered in sections 10.5-
10.8.

As a first example we consider a missile with cruciform wings whose angle

of tilt is stabilized. This problem is clarified in figure ii.i. Let us

assume that MN is the assigned rectilinear trajectory along which the missile

moves. In this case, the assigned value of the coordinate of the missile's

center of gravity along the OZg axis is z 3 = z0.
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Figure ii.I. Diagram of angular and linear coordinates,
characterizing position of missile with respect to
rectilinear trajectory during lateral motion.

Chapter 14 considers the case when the assigned trajectory is displaced
uniformly and parallel to itself. This meansthat z3 = klt where kI = const.

Other forms of z3 as functions of time may be used as approximations for con-

trolling the missile with respect to a curvilinear trajectory, because in the
region where the linear equations are valid, the acceleration of the missile

be assumedto be equal to d2Zg/dt2. The process of guiding themay missile

by meansof a radio beammaybe considered as the stabilization of a missile
with respect to assigned curvilinear trajectories. The method of generating
the functions z3(t ) for this case will be presented in Chapter 16. In any

= klt k2 t2case, the input functions of the form z 3 Zo, z = and z = may be3 3

considered as the first terms of a series used to expand a more complex func-

tion z3(t ). The position of the _issile during lateral motion is character-

ized by the linear coordinate of the center of gravity z and by angular coor-
g

dinates _ and 6. We assume that the sensor of the control system measures

the error z = z - z and the angular coordinate 4.
3 g

In a simplified investigation of the dynamics of the control process we

assume that the missile is instantaneously balanced• Under this assumption

the equation of moments, the second equation in system (8.44), is trans-

formed into an algebraic equation which associates the slip angle with the

angular deflection of the control surface. Thus the equations for the con-

i
trolled object have the form

lln the assumed system of coordinates (fig. ii.i), the positive angle es leads

to a negative value in the lateral velocity dZg/dt. However, since the sign

of the output coordinate Zg is of no significance when considering only plane

motion, the minus sign in the left side of the last equation of system (ii.i)
is dropped.
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where

= o;
dr'

a_" hscrSer,

dzg
-a-=V, Os,

e =?-#.
s

To form the control loop for lateral motion in system (11.1), it is nec-

essary to add the equations for the control system and for the automatic pilot_

which we shall initially take in the simplest form

8cr = iz(Z 3 - Zg), (11.2)

where i is the transfer number of the deviation in rad/m or deg/m.
z

Figure 11.2 represents the functional diagram of a system defined by

equations (ll.1) and (ll.2).

The functional diagram shows that the single loop network of this system

contains two integrating elements. Such a system is unstable; therefore, the

simplest control law (11.2)cannot be used. To obtain a stable system for

controlling the center of gravity, the control law (11.2) must be augmented

with compensating signals. Such a signal may be the signal proportional to

the derivative of the deviation z = z3 - Zg, or the signal produced by angle

8s, which is proportional to the derivative of the input quantity Zg when

there is no lateral wind and when the missile velocity is constant. In place

of angle 8s we may take angle @ between the direction of the trajectory and

the longitudinal axis of the missile. The control laws, which correspond to

these two cases of compensating signals, have the form

(11.3)

Figure i1.2 Functional diagram for controlling

center of gravity, defined by equations (ll.1)

(ll.2).
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--- i.,(z,.- z:) - i¢t',cr
(ii.4)

where i is the transfer number of the derivative of the deviation in radian.
z

sec/m or degree.sec/m, and i is the transfer number for the yaw angle.

The functional diagrams for the system operating with control laws (ll.3)

and (ll.4) are presented in figure ll.3b and a, respectively. In the first

case stability is achieved by a signal which is a derivative of the deviation,

while in the second case it is achieved by using fixed feedback in one of the

integrating elements.

• q 7

t

bl , ........

Figure 11. 3 . Functional diagram of control

system for center of gravity using control

laws (11.3) and (ll.4).

By combining the equations of the missile (ii.i) and of the automatic

pilot (ll.3) and eliminating all variables, except Zg, we obtain the general

equation for the entire system

d_zg dz3
_-dt' -t- a_ -'%it-+ a2% = a_ --_ + a2z_.,,, ( ll. 5)

where
/346

Iz k n& V e ;
Vcr .

al,. _ tl_ '

i,k#n_ .Ve
a2 _ ._2_..

n_

tion
In the same way, the system with control law (11.4) is described by equa-
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w1_ere

ao_ + az a_t " az_
at, at + a2z_= a2z, + b_-_F-

• . t • •

n_
ao--1 +--_;

n_

: - I1. • 1% .'

a, = "---_i, + ['_ri,v,;
.. n_. .n_ .

• 1l '

. • a2 = "-_rkjye;
n_

b I _ n_ri.V. ,
n_

(11.6)

As we can see from the structure of equations (11.5) and (11.6), and from

their coefficients, the extent of fixed stabilization of the missile along the

trajectory, characterized by the value of the natural frequency of oscillation

Q0 = a2_a0' is determined by the transfer number i . However, the damping
z

coefficient for the oscillations of the missile along the trajectory _ = al/

2a0_ is determined in one case by the transfer number i., while in the other
z

case it is determined by the transfer number iS.

We can use another simplified approach to consider the problem of control-

ling the center of gravity of a missile. Let us assume that the automatic

pilot, which controls the yaw angle_ is in the missile, and that its parameters

are selected in accordance with the method presented in section 10.5. If we

neglect the time that it takes a missile to turn by a given angle of yaw, com-

pared with the time of controlling the center of gravity, and if we let B _ 0

then, instead of the equation of moments and the equation of the automatic pilot,

we obtain a simple relationship

-- '3" (ll.7)

The simplest law for the variation in the yaw angle when controlling
lateral deflection will have the form

'L = i,(z_-%). (11.8)

We combine the third equation of system (!i.I) with expressions (11.7) and

(11.8), taking into account the equality 0s = S, and eliminate all variables

except z . This gives us
g

dzg + i_Vezz = i,VJ_.
• dt (ll.9)
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The structure of equation (11.9) shows that the simplified system for con-
trolling the center of gravity of a missile is described in this case by the
equation of an inertial element. However, with this simplified concept some
very important features of the control process are lost. The control dynamics
are muchbetter described by equations(ll.5) and (ll.6) and the corresponding
functional diagrams shown in figure ll.3.

Let us briefly consider the reaction of the system with these functional
diagrams to the control signal z3(t ) and the perturbing signal. The system

whosefunctional diagram is shownin figure ll.3b contains two integrating ele-
ments in the open circuit and is astatic two times with respect to the input
signal z3(t ) . This meansthat whenthe input function is linear

3 : kit (I lO)

tiue steady state error z will _Le _oua± to zero. The system whose functiL_al
SS

diagram is shown in figure ll.3a will not possess these properties and will

have a steady state error when z = k t.
3 1

_ne special solution of the nonhomogeneous equation (ll.6), which des<_ribes

stationary tracking, for this case has the form

Z_ (!i. ii)

Thus, when the value of z3 varies according to the law (ii.i0), we have

&u error in the lateral deflection

The error in the lateral deflection, when z is a quadratic function of
3

time (z 3 = k t2) has the following value for the system described by equation2

Zss.... " (ll.13)

The system described by equation (11.6) when z = k t2 will have a linearly
3 2

increasing error in the stationary state. Therefore, for missiles designed to

move along moving trajectories we should recommend a control law of type (1.3).

Now let us consider the system for controlling the lateral deviation of

the center of gravity of a missile with cruciform wings without making any

simplifications, i.e., by taking into account transient processes in the angular

/348
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motion of the missile. For this purpose we combine the equation of the missile
(8.44) and the equation of the automatic pilot and write it in a sufficiently
general form. As a result we obtain a system of equations

dt dt "

dzg

dt

t

dt .. dt ]
o

-- i.; _ 4,,,o.
dt

I. (ll.14)

The right side of the moment equation contains the perturbing moment AM .
P

The control law for the automatic pilot in addition to the basic position sig-

nal (z 3 - z ), also has compensating signals, which are proportional to theg

product of this signal and the signal from the yaw angle and its derivative.

Finally, the control law contains a signal proportional to the integral of the

mismatch over the lateral deflection. The purpose of this signal is to make

the system astatic when subjected to external reactions. As we have shown,

the system whose functional diagram is shown in figure ll.3a (with the com-

pensating signal for _) is less accurate compared with the system whose func-

dz3 dzztional diagram is shown in figure ll.3b (with a compensating signal ).
dt dt

The integral term in the control law is introduced precisely to give the first

system the properties (in the form of reaction to z3(t ) in the stationary state)

of the second system, in spite of the compensating signal for the angle 4.

Figure 11.4 shows the schematic diagram corresponding to control system

(11.14). _ue value of coefficients al, %, bl, b is determined by equations2

(10.48), while the transfer function for applying the external moment AM to
P

the control surface is determined by equation (10.55).

If we eliminate from equation (11.14) all of the variables except z , we
g

find the following general system of equations for the lateral displacement of

the missile's center of gravity
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d_zg d4zg .. . d=zg
at---7" + (a_ + i+ b_) _ + (a2 + _ b2 + _b_)_ -_-

• .

d2zg " dzg
+ (i_b2 + i_ b2V_) ---d?i- -t- i_b_V_ --'d-t- + qzb2V'zg =

• d_z3 dz 3 " k_V e dAM__
= i; b2V,--_i V- + i_b2V,--d-i---q-q_b2Vez3-- "Jr _ "

(11.15)

The structure of equation (11.15) permits us to draw the following con-

clusions about the properties of the system. First of all, this system is

astatic with respect to the const_ut perturbing moment AM , since the deriva-
P

tire of this moment will be equal to zero. The astaticism of the system also

exists with respect to the external constant signal z3 and to the signal which

depends linearly on time. Only when the external signal is proportional to the

square of the time (z 3 = k2 t2) will an error appear in the stationary state.

This error is given by equation

2_@v (ii. 16)
z --
SS q_Ve

If we examine the coefficients in the left side of equation (11.15), we

see that each of them contains at least one new transfer number of the auto-

matic pilot_ which makes it possible to determine these coefficients indepen-

dently. Thus, the method of the standard coefficients makes it possible to

Figure 11.4. Functional diagram corresponding to

control system (11.14).

determine the required values of the transfer numbers of the automatic pilot

and to obtain the necessary dynamic properties of the system. The only limit-

ation placed on the duration of the transient process will be the linear range

of the individual elements of the system (the deflection angle of the control

surface, allowable values of the slip amgle, load factor, etc.).
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Let us consider an example for selecting the parameters of the system for
controlling the center of gravity.

Example ll.1. As the controlled object we take missile no. 2, whose
parameters are presented in table 10.1. Let us assumethat the velocity of the
missile is V = 300 m/sec. It is necessary to select the parameters of the con-e

trol system in such a way that the control time (tc) for the motion of the center
i

of gravity is 15 sec. The transfer function for the system controlling the
center of gravity is obtained from (11.15) and has the form

i"z b.yep'Z,+ izb.,.Vep + qzb2V,e

eZgl'3 (P) = P_ -_ (ax Jc iS bOP' q- (az-_ iS b2_ i_bx,)p' -_- (i_b z + ik bzVe)pa_ "+

(i1.17)

+ izbzVep -_-qzb.V e

The coefficients of the numerator and denominator in front of the square

i_b << i- b V .of operator p differ from each other by a small quantity 2 z 2 e

Therefore we refer expression (11.17) to the typical function (2.12) and use

table 2.4 to select the coefficients. From this table we obtain the charac-

teristic equation for the differential equation of the fifth order

. + 18%p,+ sg_: + 69__.]: + t8o_ p + oo5= 0.
(ii.18)

We equate the corresponding coefficients in the denominator of transfer

function (11.17) to the coefficients of the characteristic equation (11.18),

and obtain a system of algebraic equations

ax q- ,_ bt= 18--9-o;

,_ + ,+b_+ ,'+.b,= 69_0?);

i_bz + i'_bzV_ = 69Q_;

i_b_V_ 18o_; "/

J•_/.:[LVe= O_ .

(ii. 19)

i
It is easy to see that it is impossible to achieve a control time much less

than 15 sec for missile no. 2_ unless the transfer numbers are radically in-

creased. This is associated with a decrease in the linear range of the sys-

tem. There is no difficulty in obtaining a control time of more than 15 sec

and, in this case, the linear range of the system increases.
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The value of the natural frequency of the system _oiS determined from the
ratio

_o-- _p =_9"2 _--0.613 l{sec
tp 15

where T = 9.2 is taken from the curve of the standard transient process for a
P

system of fifth order having a structure analogous to that in figure 2.8'

Substituting this value of _0 into equations (I1.19) and solving them

alternately, starting with the first, we obtain the following values for the

transfer numbers of the automatic pilot: i@ = 1.86 sec; i_= 1.58; i_ = 0.023

rad'sec/m = 1.33 deg.sec/m; iz = 4.53"10 -3 rad/m = 0.26 deg/m; qz = 1"54"10-4

rad/m-sec = 8.83"10-3 deg/m.sec.

Let us construct the logarithmic amplitude-frequency characteristics of

this system. From the functional diagram shown in figure 11.4 we find the

transfer function for the open loop system

bzVe (i_ p2 t- GP q- qz)

WZg/Zz (t9)= p2 [p3 _j_(at __ i_ ha) p'- -_-(az q- i_ b_+ i_bl) p -_ i_b=] " '

(11.20)

If we substitute into expression (11.20) the values of the missile param-

eters and the transfer numbers of the automatic pilot, we obtain

60 L(w)

z_o

• ZO

-ZO

-z_O

-GO

"-80

db/deq,%':-...,, , ,

• " -2 /dec

Figure 11.5. Logarithmic amplitude-frequency

characteristics corresponding to transfer

function (11.22).
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570(0.023p24-4.53.10-3p-_1,54.[0-4)

i)2(p34-I1.04p_ 4-26p 4-3,34)
(ii.21)

To construct the logarithmic amplitude-frequency characteristics it is

necessary to reduce the transfer function (ll.21) to the form

k ( T_: + 2¢d': + I)
V/z.#it_(p)= =

: (T]: -}-2_.3T:+ i)(T:+ 0

0.0%5 (12.3_'p2-F2.1.2-12.3p-[-l)

PZ(0.2022p_4- 2-I, 1.0.202p + I) (7.4p 4- 1)
(11.22)

Thus, to construct the logarithmic amplitude-frequency characteristics of

the system, we have the amplification factor of the open loop system K = 0.0265

and the conjugate frequencies

,,Jr= I/Tj.=: I/i2.3=0.079 1/secj _'z = llTz = 1/7.4 =0.135 I[ sec;

o,._=I/T 3 = 1/0.:_02 = ,t.9 l/see;

The logarithmic amplitude-frequency characteristics of the system are

constructed in figure ii.5 from these data. As we see from these characteris-

tics, high dynamic properties of the system are due to the large region of

characteristics with a slope of 20 db/decade where w3/Wc _ I0. It is obvious

that this high value of the ratio w3/_ c can be obtained only by means of high

frequency w3, which characterizes the rapid response of the yaw angle loop,

i.e., provides for a rapid termination of the short period motions of the
missile.

In some cases the signal proportional to the lateral displacement (z 3 -

Zg) contains an appreciable level of high frequency noise. The missile, which

acts like a smoothing filter, does not react to this noise, but will be subject

to the derivative of this signal. Frequently, sufficiently high dynamic prop-

erties of the control system may be achieved without a signal which is the

derivative of the lateral displacement. Figure Ii.6 shows the functional

diagram of a control system for the case when the automatic pilot operates in
accordance with the law
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C_
0 . . .; .

(i1.23)

. A(p) p_

Figure 11.6. Functional diagram of system with

control law (11.23).

The individual notations in figure 11.6 may be determined by means of the
following equations

k= Veq.z I/sec 2,
-, . L_

• • .

Tl • _z sec,

qz

A(p) -- i_b2 [pa + (a_ + i+b,)p 2 + (a_ +l_b2+

+ i+bl) p + i_b2]. '

(lZ.24)

For the system shown in figure 11.6 it is not possible to select the parameters

of the automatic pilot by the method of standard coefficients, as in the case

of the system whose functional diagram is shown in figure 11.4. The coefficient

in front of d2Zg/dt 2 will not contain the transfer number i_, and therefore an

independent selection of all transfer numbers becomes impossible. The method

of standard coefficients may be used for the approximate solution, which gives

the best values of transfer numbers by the method of sampling.

In this case, the simplest approach is to use the method of logarithmic

amplitude-frequency characteristics in the following manner. The parameters

of the yaw angle control loop (i} and i9) are determined beforehand, in accord-

ance with recommendations presented in section 10.5. To clarify the method of

selecting the remaining parameters k and TI and from them the transfer numbers

iz and qz' we consider the logarithmic amplitude-frequency characteristics of

a system shown in figure 11.7. To select the parameters k and TI it is nec-

essary to include the corresponding position and length of the region with a

slope of 20 db/dec. First of all, the conjugate frequency wI = I/T I must satisfy
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the relation eI _ 0.i w3. In addition, the conjugate frequency w2, which is

equal to the smallest root of the polynomial A(p), must be 4-5 times greater
than the cutoff frequency wc. To satisfy this condition for a sufficiently high

cutoff frequency Wc, which determines the response of the entire system, it is

necessary to increase frequencies w2 and _3' i.e., to force the angular motions
of the missile.

Let us also consider the transfer function and the logarithmic amplitude-
frequency characteristics of the system without an integral element in the
control law. Such a law is used in cases when a simpler control system is re-
quired, and when the small errors in the lateral displacement of the missile
from the assigned trajectory do not play a substantial role.

__odb/dec
_l-2D "

Figure 11.7. Logarithmic amplitude-frequency
characteristics, corresponding to the func-
tional diagram in figure 11.6.

The control law for the automatic pilot in this case has the form

• .. d_
6cr = i_(z_ z_)--l._-h- - i.;4'. (ll.25)

The functional diagram for the control system which utilizes law (11.25) is

shown in figure 11.8. The value of A(p) is determined by equation (11.24)

and the quantity k is equal to

I, U
Figure II.8. Functional diagram of system

with control law (ii.25).
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k- (11.26)

Figure 11.9 shows the logarithmic amplitude-frequency characteristics cor-

responding to the functional diagram of figure 11.8. If the parameters of the

loop which controls the yaw angle are selected beforehand, the form of the curve

and the conjugate frequencies w 2 and _3 remain fixed. If we vary the amplifica-

tion factor, which in this system coincides with the cutoff frequency We, the

logarithmic amplitude-frequency characteristics will either rise or drop with

respect to the axis of the abscissas.

The response of the system may be increased by increasing the cutoff fre-

quency w = k. However, in this case the condition w_ _ (4-5) w must be satis-
c _ c

fied to obtain satisfactory transient processes in the system. As in the pre-

ceding cases, this condition may be satisfied by forcing the transient proc-

esses of the short period motion.

LC$_-2_ db/dec

_i _

Figure 11.9. Logarithmic amplitude-frequency

characteristics corresponding to functional

diagram of figure 11.8.

Section 11. 3 . Control of the Cen_er of Gravity of a Plane-Winged

Missile during Lateral Motion

The general formulation of the problem remains the same as shown in

figure !i.i. The difference in this problem is that the turning of the mis-

sile in the plane xoz must be carried out with tilt, because only this pro-
g

duces a substantial lateral force. This difference produces some special

features in the method of selecting parameters for the system which controls

the missile with plane wings, compared with the one considered in the pre-

ceding section. This method is clarified in the present section.

In analyzing the control system for the center of gravity of a plane-

winged missile, we start with the greatest possible simplifications, which will

make this problem illustrative without distorting the qualitative sides of the

347



process. These simplifications consist of the assumption that the system for
controlling the direction rudder makesit possible to achieve the flight without

slip (6 = d#/dt = 0), and that the tilt transient processes can be neglected,
because the duration of these processes is at least one order of magnitud,_
less than that of the processes for controlling the center of gravity. With
these assumptions, from the general system of equations for lateral motion of
a plane-winged missile (8.42) we obtain I

d_ @
k,-_ = O;

dt

(11.27)

With these simplifications, the second and third equations of (8.42) drop

out. In addition, the term ae dy/dt in the first equation is not taken into

account, because in the majority of cases it is small compared with the other

terms of this equation. The control law for the automatic pilot in this case

degenerates into the ratio between the tilt signal and the signals which pro-

vide for the control of the center of gravity. Let us consider two possible

control laws similar to (11.3) and (11.4)

dz a' --i_'I + il dz
dzg

) + 4 -:- zD = o. (ll. 28)

and

(11.29)

The systems with the control laws (11.28) and (11.29) coincide completely

with those systems whose control laws are (11.3) and (11.4). They have the

same reaction to the control force z3(t ) . Several insignificant features dis-

tinguish the system with law (11.4) from the system with law (11.29), because

in the latter case _ = 0 and 9 = 8s.

The general equation for the system controlling the center of gravity,

when the control law is given by (11.28), has the form

_e drop the minus sign in front of the derivative of z_ for the same reason

as in equation (ii.i); in addition, instead of the til_ angle, it is more con-

venient to consider its negative value.

348



d2z_ ik dzg iz "" dz3 iz

• • ._

(11.30)

It follows from expression (11.30) that under these assumptions and with

control law (11.28), the motion of the missile's center of gravity is described

by a differential equation of the second order, such that the coefficients of

this equation do not depend on the flight velocity and flight altitude. Con-

sequently_ the transient time of processes along the z coordinate depend on
g

these parameters. The path travelled during the transient process is directly

proportional to the flight velocity, and the curves of the transient process_

which are constructed along the axis of the abscissas to the scale S = Vt,

represent the flight trajectory of the missile.

With initial conditions Zg = Zo,. dZg/dt = O, the missile is guided to the

assigned trajectory by means of the double additional turn (fig. ii.i0). De-

pending on the scale along the axis of the abscissas, the curve of figure

ii.i0 may be either the graph of the transient process [Zg = f(t)] or the mis-

sile trajectory [z = f(S)]. The name of the maneuver shown in figure ii.i0
g

shows that over the initial region of the trajectory the missile undergoes an

additional turn in one direction with a definite tilt angle, and after the in-

flection point P the direction of the additional turn and the sign of the tilt

angle assume an opposite value.

For the control law (11.29) the general equation for the system which

controls the center of gravity of the missile is obtained in the following
form

T o

e

sat
t
c

o _

Figure ii.i0. Schematic diagram of double turning

of missile to achieve assigned trajectory; subscripts

at = additional turning, c = control.
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In equation (11.31 ) the dampiug coefficient depends on the flight velocity
and decreases as the flight veloc_ =y increases. This relationship is easily
explained, if we note that the d_nping in the system is determined by angle _,
contained in the control law (11.29). At the sametime, from the second equa-
tion of (11.27) it'follows that

1 dz£
'_ .... (il. 32)
' Ve dt "

Thus, for a given velocity the variation in the deviation dZg/dt angle

will become smaller when the flight velocity Ve increases.

_ne nature of the missile's trajectory in the case of the control system

given by equation (11.31) is the same as in the case of the control system

corresponding to equation (11.30) . The graph in figure ii.i0 remains valid

for equation (11.31), except that in this case, when the flight velocity varies,

the variation in the scale along the axis of the abscissas (S = Vet ) will be

accompanied by the variation in the nature of the curve, because the damping

coefficient will depend on the velocity.

Now let us proceed with the analysis of the system for controlling the

movement of the center of gravity of a plane-winged missile with respect to a

given trajectory by taking into account the true characteristics of the motion

with respect to the xI axis, i.e., by taking into account the delay in the

establishment of a given tilt angle. In this case, to describe the controlled

object, it is necessary to take the following equations from system (8.42): 1

d_

dt dt

(ii.33)

iThe control system (11.33) is obtained from (8.42) under the assumption that

= d_/dt = 0, i.e., that the slip angle is eliminated by the direction rudder;

also the negative value of the tilt angle is considered and the minus sign

before the derivative Zg is dropped.
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The external perturbing momentwith respect to the xI axis is introduced

into the second equation of (11.33) .

Let us consider the properties of the control system whenwe have different
control laws for its automatic pilot. For the first law we select the following

dl . / dz3
6ai dz_)at ' "q- i_ (z3 -- zz). (ii. 34)

The signal which is proportional to the angular rate of change of tilt

dy/dt is introduced into law (11.34) to improve damping with respect to the xI

axis. The signal which is proportional to the tilt angle y is the basic feed-

back signal in the tilt control loop, which is compared with the position

signals and stabilizing signals, which in turn are proportional to the lateral

deviation of the center of gravity (z3 - z ) and its derivative (dz3/dt dZg/dt).g

Figure ii.ii shows the functional• diagram of the system for controlling /358

the center of gravity whose control law is (11.34) . Combining the equations of

the missile (11.33) with the equations of the automatic pilot (11.34), we

obtain a general differential equation for this system

d _'z_, (;'3%, . "

d:z_, - " dzg ,

= i_ l_ai Vta¢ d:z3 ' " " dza
dt_'--7"."r- V¢ (i_. 13,_kr.._ i,13a_ %) _ "b

aeV e dA),_p kTVe " "

(11.35)

• o AF_ / •

Figure i!.ii. Functional diagram of system with

control law (11.34) .
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The structure of equation (11.35) permits us to draw the following conclu-
sions concerning the control system with law (11.34) . This system is astatic
with respect to the change in the assigned value of lateral deviation with con-

stant velocity (z 3 = kt) and astatic with respect to the constant perturbing

momentAM . The selection of the transfer numbersof the automatic pilot mayP

be accomplished by the method of standard coefficients. It is obvious that,
as in the case of the missile with cruciform wings, the increase in the re-
sponse of the system described by equation (11.35) is limited, first of all by
the limitation of the tilt angle. As the natural frequency of the system

=_f_ai increases, its response will increase. However, this will take

place only in the range of (z 3 - Zg) variation, for which the tilt angle is

not limited by an assigned value. Obviously, this range will becomenarrower
when the natural frequency and the response of the system increase.

As an example, figure 11.12 showsthe curves which characterize the
variation in deviation Az = z3 - Zg of the yaw.angle and the tilt angle, when

this system is used to control the center of gravity of a plane-winged missile.

If the generation of the signal derivative, proportional to the lateral
deviation, is associated with technical difficulties caused by the high noise
level in this signal, we may apply the following control law for the automatic
pilot

6ai ..... i i d_ . (!i. 36)

_,,/,z

Figure 11.12. Graphs of transient process when

center of gravity is controlled in lateral
direction.
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The functional diagram of a system with control law (11.63) is shownin
figure 11.13.

Combining the missile equations (11.33) and the equations of the auto-
matic pilot (11.36), we obtain a general equation for the system controlling
the center of gravity

d'_z_ d3zg d2zg ,

k.,-t-i,l, o "eL),. _ + i, tso_k.,w,%_ .

• . ,eve k v,
= i,16_ i %V, _lt -F" t,l_i l',V, z3 +: .tr "_t &

(11.37)

Unlike equation (11.35) where the coefficients of the zero and first

derivative increase proportionally to the flight velocity, in equation (11.37)

the principal part of the coefficient in front of the first derivative

>>i i_ a V ) does not depend on the velocity, while the coefficient16aiky z _ai e

in front of the zero derivative is proportional to this velocity. Thus, as in

the case of the simplified problem with control law (11.36), the damping of the

system decreases as the flight velocity increases. In addition, the system

described by equation (11.37) is static with respect to the external signal,

which varies with a constant velocity (z3 = kt). As we have pointed out, the

system described by equation (11.35) is astatic with respect to this type of

signal.

_ _:1___1..._ ' [Z_F
• z_ _ Lzp÷{z cgep+R _,

Figure 11.13. Functional diagram of system with

control law (11.36).

I"

In both systems, the constant external moment produces an error given by
equation

A%
(11.38)

Zss - izZba±Jx •

353



To eliminate the error produced by the external moment_it is necessary to
introduce the integral of the mismatch in lateral deviation into the control law

• l

d_ _ (11.39)6 ai = "i_ _ _ i, "r -- 4'_ + l,(z_ -- zg) + ;, (z_ -- z_) dt.
J
O

The functional diagram of the system with control law (11.39) is shown in

figure 11.14. Combining the missile equations (11.33) with the equations of the

automatic pilot (11.39), we obtain the general equation of the system

d:zg ". d_z , dJzg

__::_...'r(l_ + (_t,_o_!-7,-+ (i,tag,l. i.ita°_:_e)-a,_-'l"

d"zg"]. %)
U,/ao_t;r + 4,%A.V,.)--ayr- + V, (izta,=,k,+ q,ta,L

+ q,16oi k_V, zg -- " d'z,
"- t ,l_,i %Ve--_.+ V, (i,16 i :,k, +

(11.40)

-d_., ' ,,iv, _ 4
q-" q,! 8,,ia,! _ -v q,18.i k,V,z, +. Jx dr'

kTVe d&V,p
+'?7 dt ""

The structure ofequation (11.40) shows that the introduction of the integral

term into the control law has made the system for controlling the center of

gravity astatic with respect to the constant external moment AM and with respect

to the external signal, which is a linear function of time (z3 _ kt).

Figure 11.14. Functional diagram of system

with control law (11.39).

The selection of transfer numbers in systems described by equations (11.37)

and (ll.40) may be carried out most simply by using the method of standard co-

efficients. The selection of a particular control law from those considered in

this section is determined by the specific requirements assigned to a system for

controlling the center of gravity of a plane-winged missile.
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In this section we did not consider the use of an accelerometer 3 which
measures the lateral acceleration of the missile to produce compensating
signals. Such a signal, which is proportional%oV dSs/dt _and also the integral

and derivative of this signal maybe conveniently used in the system for con-
trolling the center of gravity of a missile.

Section 11.4. Control of the Longitudinal Motion of the Missile's
Center of Gravity

The problem of controlling the longitudinal motion of a missile's center

of gravity with respect to a fixed trajectory is similar to the problem, con-

sidered in section ll.2, of controlling the center of gravity of a missile with

cruciform wings in the lateral motion. For some flight conditions (for example,

for horizontal flight), the longitudinal motion of the center of gravity may be

reduced to lateral motion (for a missile with cruciform wings)3 as carried out

in section 10.6 for the angular motions of the missile_ if we assume that the

flight velocity is constant. It is only necessary to replace the parameters of

lateral motion in the equations with the corresponding parameters of longitudinal
motion.

" / i

, . , ,,,,,j/-..:f
• .... ..

Figure 11.15. Angular and linear coordinates which

characterize position of missile with respect to its

rectilinear trajectory during longitudinal motion;

subscript f = fixed.

However, if the missile has an inclined trajectory, terms appear in the

equations for longitudinal motion, which are new compared with the lateral

terms, and these may produce a substantial effect on the nature of the motion.

In addition, in the problem of longitudinal motion we can take into account

the variation in the missile's flight velocity during the period of perturbed

motion_ which cannot be done in the problem of lateral motion when the latter
has the form described in this book.

The formulation of the problem of controlling the motion of the center

of gravity with respect to an assigned trajectory is clarified in figure

ll.15. Let us assume that the straight line MN is,the assigned trajectory
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with a slope 8 . In the general case it may not coincide with the fixed incline
e

system of coordinates Xfixed_ Yfixed' which is introduced to distinguish it from

the Earth system x , y . If the assigned trajectory is curvilinear, then, as
g g

shown in section ll.2, we can determine Y3 as a function of time_ if we know

its shape and the velocity of the missile.

The system of equations for longitudinal motion, if we take into account

the fact that we must separate the linear deviation of the missile from the

assigned incline trajectory, is obtained from (8.26) and has the form

at = V_ sin 0., + cos 0,;.

d_/f V, aO;
dt

a_)= AO -[-. A_.

(iz.41)

(subscript e = engine)

The equation for dAx /dt, which entered into equation (8.26), is not in-
g

troduced into system (11.41), because it is isolated and may be integrated

separately after system (11.14) has been solved and we have obtained AS=AS(t).

Without introducing a substantial error, the system of equations (11.41) may

be simplified in the following manner. Because the coefficients a and b are
Y Y

usually small, the terms with these coefficients in the first and second equa-

tions may be neglected (when the slopes of the trajectory are small). If this

assumption produces a substantial error (when the slopes of the assigned tra-

jectory are large), then, if we know the velocity of the missile, we may com-

pute 5y(t) approximately as a function of time and transpose the terms with Ay

into the right part_ assuming that they are given functions of time. In both

of these cases the fourth equation drops out.

Let us consider as an example the first _f these methods for simplifying
the problem. We obtain a system of equations

iThe right sides of the first two equations of system (i1.42), unlike those of

system (ll.41) which has been written for the general case, become equal to

zero, because we assume that the engine of the missile is not controlled, i.e.,

A6e = 0. The third equation contains the external moment _.
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d-lz
_7_,_0 ]- a_-_ + "'-'-- -l- avaV = O;

d!

dAO

dt
--- -- boAO --- b,A_ -- bvAV = O;

dL",$ ___ C_. d"d) dA'_
--dr: _ j- C;,_ + c=Aot-JcCvAV "--"c_A__.I.'-_-"--f;bA-_ .,

dvf = VeAO; .
dt

AD = _0 + Aa.

(.z._2)

The fourth equation of system (11.42) is isolated and may be considered

separately. However, this situation prevails only as long as we are studying

the motion of the missile without a control system. When we take into account

the control system, this equation becomes associated with the remaining equa-

tions.

If we neglect the variation in velocity and the effect of weight (AV =

dAV = b8 = 0) in system (11.42), then, as we pointed out at the beginning of

this section, the equations for the longitudinal motion will become completely

analogous to the equations for the lateral motion of a missile with cruciform

wings (8.44). The problem of controlling the center of gravity in this case

is considered in detail in section 11.2.

Let us consider the special features which occur in the problem of con-

trolling the center of gravity, When we take into account the variation in ve-

locity and the effect of the gravity force. First we simplify this problem as

much as possible. For this purpose we assume_ as in section 8.4, that the mis-

sile is instantaneously balanced. In this case_ the equation of moments is

transformed into an algebraicsystem (11.42) and takes the form

aobO+a_b_+ day
• _+avbV_-O;

dAO

dt
-- -- boAO -- b_ba -- bvAV = O;

" dyf = V, AO.
dt

(11.43)

Let us take an.automatic pilot with the simplest control law

(iI.44)
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By combining the equations of the missile (11.43) with the equations of
the automatic pilot (11.44) we obtain a general equation of the system for con-
trolling the center of gravity of a missile with respect to an inclined tra-
jectory

. + + i,v,-ca ) + i,v, vf=

. c_ b.Ve damp caVeAMp__ 4V " b_q dy____z__ + 9V, c_ _ Y, + _ + .
C. dt .. • c_ . J zc. dt l zc

(Ii.45)

The values of coefficients aI _d a2 are determined by equations (8.37).

Equation (11.45) shows that if the missile is stable without a control system

(aI >0 and a2 >0), then, with the simplest control law, we can control the

lateral deviation of its center of gravity with respect to the inclined trajec-

tory in the vertical plane. This result differs in principle from the one which

was obtained when we considered the lateral motion of a missile with cruciform

wings, whose system for controlling the center of gravity in the case of the

simplest control law (11.2) turned out to be unstable.

In section 8.4"it was pointed out that for some missiles during different

flight conditions (for example, during pitching), coefficients aI and a2 may

become negative. If aI becomes negative, motion with a control system will also

become unstable, as follows from equation (11.45). When a2 is negative, the

question of stability is solved by the Horwitz inequalities.

If a _ iyVe b_ c_
2 ¢.

, then the system retains its stability.

Equation (11.45) shows that when the simplest control law is used it is

difficult to provide for the desired dynamic properties of the system, because

we can control only two coefficients of this equation and can do this only by

means of one transfer number i . In addition_ the system described by equa-
Y

tion (11.45) is static with respect to the external perturbing moment AM .
P

Let us introduce a series of compensating signals into the control law

including an integral signal for eliminating staticism. In this case we

take the total system of equations (11.42) for controlling the object. There-

fore, we must also introduce compensating signals in the control law for

motion with respect to the center of gravity. Taking these remarks into ac-

count, we obtain a control law in the form

•dA_ dAO

ASp=--i_ dT--ia_--i_ d--7 -- i°'AO-t- iy(Y3--_) -t- (11.46)

-t- q, _ (y_ " yf) dt. :
". 0 .
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The signals proportional to the deviation of the trajectory slope and to
the derivative of this angle are introduced in the control law in place of the
stabilizing signalsas the first and second derivatives of the linear deviation
y . These signals maybe obtained by meansof an accelerometer. The signal of

f
the accelerometer is proportional to V --dAe,while its integral is proportional

dt

to VAS. To compensatefor the acceleration componentsproduced by the inclined
trajectory_ it is necessary to introduce a compensating signal from the position
gyroscope through the sine-cosine potentiometer.

Combining the missile equations (i1.42) with the equations of the auto-
matic pilot (11.46), we obtain a general equation for this system1

dcg_ t" at _Yf + . d,gf #g:f
at* ---d_ a2 .'-_u" + a3 _ +

. d_gf d_f h d'g, + a, _ + adh +,

b,V, d'AMp ¢_V, d'AA_p

+ Jz 'dl_ -[4 Jz dt '

(11.47)

where

al

a2

+

+

+

a 4

+

(/5

(/6

= alf-_-ba -- bo + C_ .]1,_ C_ "Jl'- i_ Cd_l

= c_ + b,,c_ + c_ + i_c_ + (c_ + c_ q-

i_ c,:) (a v -- &) -k (i_ + i_ ) b,,cs;

= (c. + i c,)(av -- &)+ + +

(c_ + c_ + i6 c_) c2 -- a_c v + iac6b_ +"

iob, c_ _ id c_ca;

----(c. -'r i_c,:)c2 -- CvC_ + i_c_c3 +

4boO,Y,+ ioc,

-_- qyb_c_V, + iyc_c3Ve; ,

qyc_cye;

bt = iyb_c_V_.

(Ii._5)

The expressions for the coefficient of equation (I1.47) show that each

of these coefficients contains at least one new transfer number of the /367

_he values of coefficients Cl, c2, c3 and c4 are determined by means of equa-
tions (8.30).
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automatic pilot, and for this reason the required values of these coefficients

can be selected by the method of standard coefficients. Because we have in-

troduced the integral term into the control law_ the system has become astatic

with respect to the constant perturbing moment AM . In addition to this, the
P

system is also astatic with respect to the control signal which depends linearly

on time (Y3 = kt).

Figure 11.16. Graphs of transient process when

controlling center of gravity during longitudinal
motion.

If the requirements for the system which controls the missile's center of

gravity can be lowered, the control law may be simplified, which will make the

entire system less complex.

For example, if the deviations from the assigned trajectory produced by the

external moment are not significant or if this moment is very small, we may re-

ject the integral term in the control law, which will bring the order of equa-

tion (11.47) down to unity. We can also attempt to achieve the desired dy-

namic properties of the system by using only the signal for the pitch angle

(A_)j neglecting the signal for the trajectory slope (AS), etc.

As an example_ figure 11.16 shows curves which characterize the variation

in the linear deviation Ay = Y3 - yf' the variations in the angles of attack

_ in the slope of the trajectory A8 and also in the velocity AV, when the

center of gravity of the missile is controlled in the vertical plane.

Section 11.5. Control of the Center of Gravity when the

Velocity of the Missile is Variable

In most cases of practical importance, the control of the center of gravity

of the missile with respect to the assigned trajectory takes place when there

is a rather large variation in flight speed. This situation occurs when the
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missile is placed on the radio beamright after launching, when ballistic _:Lis-
siles are controlled over the active region of the trajectory, when the air-
plane-missiles take off, etc. Therefore, it is rational to consider the special
features of the control system for the center of gravity in cases when the flight
velocity of the missile is variable. Initially, this velocity is computedas a
function of time from the condition that the missile must be maintained exactly
on the assigned trajectory.

As an example, let us consider the control of the lateral motion of the
center of gravity of a missile with cruciform wings stabilized with respect
to the longitudinal axis. As in the preceding sections, we makea series of
assumptions to simplify the problem as muchas possible, which is particularly
necessary in the present case since the motion of the missile is now described
by linear equations with variable coefficients. To simplify the system of
equations (8.56) which describe the lateral motion of the missile whose velocity
is variable, we assumethat the missile is balanced instantaneously, i.e., we
neglect the time of transient processes during the short period motion. In
addition, we shall assumethat the variation in angles _ and _ is small and,
consequently, sin _ and sin @are replaced by the angles themselves. Taking
into account these simplifications and the accepted rule for the signs, the
system of equations (8..56) takes on the form

'
dt dt , --_

rn[z. 8

dz_r =: V (,_ -- _). "
dt

(ii.49)

For the equations of the missile we use an automatic pilot with the follow-
ing control law

dz, dzg

Combining the equations of the missile (11.49) and of the automatic pilot

(11.50) and eliminating all of the variables except Zg, We obtain the general
equation for this system I

et, v et 2,, .x.

,3 ' "

• p sPV' % dz, '
2m .m_ de -[- i,c_S ova mgx ,n_ z_r= i; 2m 0,_ z_..

(ii.51)

iIn obtaining equation (11.51), the mass of the missile was considered constant.
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Since c
z

< 0 and m_< O, when the condition
Y

......- > (11.52)
2::z /n_ V at

is satisfied, equation (11.51) corresponds to the stable system for controlling

the center of gravity. Obviously, in the case of very small flight velocity

(with acceleration), one of the components (I/V dV/dt) of the coefficient in

front of the first derivative of z may become largej and since it has a nega-
g

tire sign the motion of the center of gravity of the missile will be unstable.

However, when the missile is accelerating very rapidly, it may pass this in-

stability stage so quickly that there is no time for any substantial deviation

to take place from the assigned law for the motion of the center of gravity.

At high velocities this component becomes small, while the second component

increases as the square of the flight velocity. Under these conditions, the

first term may be neglected.

As in the case of section 10.8, when we considered the short period motion

of a missile which travels with a variable velocity, we shall assume that over

a limited region the velocity varies uniformly, i.e., V = j(t 0 ± t), where the

plus sign refers to accelerated motion, while the minus sign refers to de-

celerated motion. Let us substitute this value of velocity in equation (11.51)

and analyze it by the method of quasifixed coefficients. After substitution

equation (11.51) takes the form

[ I ]dr, + v _ + ']:b (to± 0_ -Tg-azt+ t_b (toi O=z_=

dz3

= i_ .:b (to _ t)' "-7/-" + t'J2b (4 +--Ot_,

(11.53)

where

Applying the method of quasistationary coefficients to equation (11.53),
we obtain from table 8.5

d=zg dz 2 dz_
dt a + i_ j'_bt_ _ + i, j2bt_zg =i i j'=bl0 _ _izj'2bt_z,. '

(11.54)
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Comparing equations (11.53) and (11.54), we see that, due to the introduc-

tion of corrections from table 8.5 into the coefficient in front of the first

derivative, the first term of this coefficient has vanished. This term took

into account the effect of acceleration on the damped lateral motion of the

center of gravity.

Equation (i1.54) gives us an expression for the natural frequency

(ll.9 )

and an expression for the relative damping coefficient

KF (i1.56)
---- 74.

Equations (11.55) and (11.56) show that in this control system for a missile

moving with acceleration or _eceleration the natural frequency and the relative

damping coefficient are directly pr)portional to the instantaneous velocity V0 =

jt O. When the velocity increases, these characteristics increase, and when it

decreases_ they decrease.

The analysis of the longitudinal motion of the center of gravity of a missile

which travels at a variable velocity is somewhat more complex than the analysis

of the lateral motion bec_se equations (8.52), which describe this motion_ con-

tain additional terms due to the effect of weight in the projection of the thrust

along the longitudinal axis on the missile. However, from the qualitative stand-

point the effect of variable flight velocity on the longitudinal motion of the

missile's center of gravity is the same as the effect on the lateral motion con-
sidered in this section.
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CHAPTER12. THEMOTIONOFA MISSILE IN A DISTURBEDATMOSPHERE sm

Section 12.1. General Information

The analysis of missile motion carried out in the preceding chapters

assumed that the atmosphere through which the missile moves is fixed with re-

spect to Earth. This assumption is quite valid for the solution of many prob-

lems associated with the control dynamics of missiles. Such problems include

the selection of parameters for the missile control system and the determina-

tion of the basic components of its motion.

However, in the exploitation of guided missile_ problems arise which

require that we take into account the possible movement of the air with respect

to the Earth's surface. First of all, this covers problems of the scattering

of guided missile trajectories produced by wind. The principal role is played

here by regular and mainly horizontal airstreams. These streams are produced

by the nonuniform distribution of atmospheric pressure (pressure gradient)

along regions extending for tens or hundreds of kilometers. In other problems

associated with the selection of the factor of safety for the missile frame

and with determining the resistance of equipment to vibration, the principal

role is played by atmospheric turbulence. Turbulence is the chaotic movement

of air with individual portions extending from several kilometers to several

meters. Gusts of very small duration (of the order of one meter or less),

although they occur in the atmosphere, have a low intensity and they react with

high frequency on the missile moving at a high speed. Therefore, they produce
no noticeable effect on the characteristics of motion.

The turbulence of the atmosphere is due to the process of vortex forma-

tion, associated with the absorption and scattering of energy which take place

continuously when large masses of air are displaced in any direction. As

experiments have shown, the turbulent gusts of air, starting with an altitude

of several hundred meters above the surface of the Earth, are isotropic, i.e.,
they have no preferred directions.

The present chapter presents a method for taking into account the effect /372
of air motion, with respect to the ground, on the flight of guided missiles.

Section 12.2. Mathematical Description of a Disturbed Atmosphere

When a missile flies in an atmosphere at rest, the vectors for its air-

speed and ground speed coincide. If a missil_, whose ground speed is equal to

V, moves in an atmosphere which has velocity W with respect to the ground, its

air velocity is given by equation (subscript B = air)

VB: (121)
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Relationship (12.1) is clarified in figure 12.1. The negative sign in
front of the wind velocity vector in equation (12.1) is explained by the fact
that the aerodynamics of missiles consider the velocity vector of the missile
with respect to the air, rather th_n the opposite velocity vector of the _ir
with respect to the missile. In _cordance with what has been presented in sec-
tion 12.1, the air velocity vector with respect to the Earth or simply the wind
vector is considered to have two components

=Wo + Wc. (12.2)

where W0 is the constant component of wind veloci_ty, which takes into account

the orderly streams of air of larcc extent; and W c is the variable (random) com-

ponent of the wind velocity, which takes into account the turbulent air gusts.

The mathematical description of the constant wind velocity component is obvi-

ously not very complicated. The constant wind velocity vector may be resolved

along the axes of the coordinates which are used to describe the motion of the

missile and can be taken into account when the equations of motion are formu-
lated.

• y _

Figure 12.1 Velocity triangle of wind, ground

speed and missile air speed; cg = center of gravity.

Experiments have shown that the variable component of the wind is a random

function of coordinates x, y, z of a given point in the atmosphere and of time t.

To analyze this component we resolve the vector Wc (x, y, z, t) along the axes of

the coordinates, which are associated by an arbitrarily oriented fixed system

W¢ (x, u, z, t) _- iw,_. (s, y, z, t) q- i_vcy(x, y, z, l) q- kw¢, (x,v, z, t),

where Wcx , Wcy , Wcz are the projections of W c along the corresponding axes; and

i, j, k are unit vectors along the xyz axes.

The projection of the vector Wc (x, y, z, t) is a random function of the

same arguments as the vector itself.

To simplify the description of missile motion under the action of a random

wind component, we make the following assumptions:
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(i) we assumethat the velocity of the randomwind componentis the _ame
at all points on the surface of the missile; such an assumption is quite admis-
sable for missiles whosedimensions are not too large;

(2) the randomwind componentis due to the turbulence of the atmosphere,
which is assumedto be isotropic. This is valid for altitudes from 500 - 1000 m
and up.

On the basis of assumptions concerning the isotropic nature of atmospheric
turbulence we can maintain that the randomfunctions Wcx, Wcy, Wczmust be iden-

tica! in the probability sense. Therefore, the probability characteristics
obtained for any one of the functions maybe considered valid for the other
two functions.

If we examine the turbulent atmosphere to evaluate its effect on a hig_h
speed missile, we can makea series of simplifications when we describe the
randomwind componentmathematically. Because the projections of the random
wind Wcx, Wcy, Wczare small comparedwith the velocity of the missile, the

velocity field of turbulent gusts canbe reduced to a frozen fixed model in
space. In the'case of this field, there is a single-valued relation between
the coordinates x and t which is determined by the velocity of the missile

x= Vt.

In addition, based on these assumptions, we shall neglect the variation
in the velocity of randomwind as a function of coordinates y and z within the
limits of the missile's dimensions. All these simplifications make it possible
to consider the randomwind vector as a function of only one variable: coordinate
x or time t. On the basis Of this, in place of (12.3) we obtain

VCdx)= (t) = iw,. (x) + iw, (x) + (x) =

= iwc x (l) + ]wcy (t) + kwc. (t).
(12.4)

To illustrate the nature of the random functions Wcx. Wcy , Wcz , fig. 12.2 /374

shows the experimental curve for Wcx(x).l Many experiments2 show that within the

limits of several tens and sometimes several hundreds of kilometers, the meteor-

ological conditions remain more or less _nchanged, and the considered function

iyu. P. Dobrolenskiy, The Turbulence of the Atmosphere as a Source of Perturba-

tions for Airplane Automatic Control Systems, Izv. AN SSSR, "Energetics and

Automation" 1961, No. 5.

2H. Press, M. T. Meadows and I. Ha@lock, A Reevaluation of Data on Atmospheric

Turbulence and Airplane Gust Load_ for Application in Spectral Calculations,

NACA Report No. 1272, 1956.
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for the velocity of random wind is a stationary random function. In this case,

the probability characteristics of this function do not depend on time t and

consequently, do not depend on coordinate x.

W

cxIm/sec _ h^ • '

Fig. 12.2. Oscillogram of random wind component

which coincides with direction of flight.

The concepts of correlation function and spectral density considered in

section 2.5 are applied with success to the analysis of stationary random

processes. We present here the corresponding equations with the variables
which will be used

.R(.)" .IS (_o)cos.e.<_2;

S (_) = 2 R (_)cos_._d_;•
! 1% "

o

o_= _ (o) _)d_,
J
0

(12.5)

(12.6)

(12.7)

where X is an independent variable which describes the increase in the linear /375
spatial coordinate x which coincides with the direction of flight and which is

measured in m; and _ is the spatial angular frequency measured in rad/m and
associated with the angular frequency w by the relation

_= _

V (12.8)

The use of spatial angular velocity _ instead of time angular velocity _ in

equations (12.5) - (12.7) is based on the concepts concerning the velocity field

of turbulent gusts as constituting a frozen, fixed model in space. The advantage

of this approach to the problem consists of the possibility of determining this

velocity field of turbulent gusts by means of spatial coordinates. This concept

makes the analytic expression for the field of turbulent velocities universal,

thus suitable for investigating the dynamics of a missile flying at any ve-
locity.

367



The theory of isotropic turbulence contains analytical expressions for

correlation functions and spectral densities for the components of random wind

vector. The experimental data on the turbulence of the atmosphere agree well

with theoretical results.

The theory of isotropic turbulence I shows that it is sufficient to have

two correlation functions (or two spectral densitites) to describe all the

components of random wind. The meaning of these functions and the difference

between them is clarified in figure 12.3., from which it follows that

wz,(x+×)
or

w_ (x-'-x)

or!
w.(x)

X

g,(×)

e2(x)

Ip ,

,X

Figure 12.3. Position of two components of random

wind with respect to flight direction.

RI(_ ) is the correlation function for the wind velocity projection normal

to the direction of the coordinate x, along which the correlation is investigated;

R2(_ ) is the correlation function for the projection of the wind velocity

coinciding with the direction of the x coordinate.

Consequently, we must use the correlation function R2(_ ) for the wind pro-

jection Wcx(_) and the correlation function RI(_ ) for the projection of Wcy(_ )

and Wcz(_ ).

The analytic expressions for these equations have the form

RI (J == o_(1 -- x/2L)e-_/L;

2 z't
_2 (Y') = Oig/ _- "i "o

(12.9)

(12.1o)

ijohn Batchelor, Theory of Homogeneous Turbulence, I.L., 1955.
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Equations (12.9) and (12.10) have two parameters: the average value for the
square of the randomwind velocity (dispersion) c_ , which characterized the

turbulence intensity, and the so-c-_kled turbulence scale L which is proportio_al
to the average dimension of the at:_osphere.

Using these equations, graphs are constructed in figure 12.4 for normalized
correlation functions RI(_)/_ _ and R2(_)/c_. The graphs in figure 12.4 show that

turbulence scale L characterizes the damping of correlation for the velocity of
randomwind.

A(×_H}
6_
1.0

a6

#.2

0

- _z

6_.

i

I.. Z

Figure 12.4. Graphs of normalized correlation

functions for random components of wind.

The presence of analytic expressions for correlation functions RI(_) and

R2(_ ) makes it possible to obtain from equation (12.7) analytical expressions

for the corresponding spectral densities. These spectral densities are given

by equations.

L f + 3_2LS
S, (Q) = a_

. O__o_L,), (12.1i)

s: (_) = o_ L 2
= _+-O:L, " (12.12)

The graphs of normalized spectral densities Sl(_)/_w2 and $2(_)/_2 are shown

in figures 12.5 and 12.6, respectively.
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Equations (12.11_ and (12.12) contain the sameparameters as equatio_is
(12.9) and (12.10); _ and L. It is obvious that turbulence scale L must

depend on weather conditions and on the altutude of the missile. However_we
do not have sufficient experimental data on this question at the present time.
Therefore_ we shall use the most _robable value L = 300 m.I

(1)
% J -----

IO-2

_ e -j I
0 10"'_ 5 - I0 "_ 5 I0" _ 5 /0

Frequency in rad/m

Figure 12.5. Graphs of normalized spectral density

for random wind component constructed in accordance

with equation (12. i).

For the constant turbulence scale L the state of the atmosphere is char-

acterized by one parameter--the root-mean-square value of random wind _ . It
W

is sufficient to determine how quantity _w depends on weather conditions and

flight altitude to obtain complete data on the state of the turbulent atmos-

phere. At the present time there is not enough experimental material avail-

able which would make it possible to obtain a reliable variation in _w as a

function of weather conditions and flight altitude. For illustration we pre-

sent data which are available on this question. I

i
See footnote 2 on page 366.
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-it,o,

Frequency _ in rad/m

Figure 12.6. Graphs showing normalized spectral den-

sity for random component of wind constructed in ac-

cordance with equation (12.12).
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Figure 12.7. Curves for probability distribution

function of root-mean-square value of random wind

for various altitudes.
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Figure 12.7 shows the probability distribution functions for the root-

mean-square value of random noise at different flight altutudes. These

curves give the probability for exceeding the given value _ . A comparison
W

of the curves for the probability distribution functions for various altitudes

makes it possible to draw the following conclusion. As the altitude increases,

the time of flight in relatively quiet atmosphere increases substantially.

For example, the period of flight in a practically calm atmosphere (_w < 0.5

m/sec) for altitude 0-3 km consititutes approximately 70 percent of the total

flight time_ while for an altitude of 9-15 km it is approximately 93 percent.

The flight time in a highly perturbed atmosphere (_w > 2. 5 m/sec) for flight

altitudes of 0-3 km is approximately 0.4 percent, wmile for altitudes of 9-

15 km it is equal to only 0.05 percent, i.e., approximately ten times less.

To consider the effect of weather on the mean square value of the random

wind velocity, we introduce the following basic characteristics for the tur-

bulence of the atmosphere:

(I) atmosphere practically at rest (_w < 0.5 m/sec);

(2) the turbulence of clear weather;

(3) the turbulence of cumuli_s clouds;

(4) thunderstorm turbulence.

!

5

0

_ 5
+_ _
•_ o 1
r-t ._I0 -_ ,,

m 5 . \.r4

\_J

o I 2 3 o 5

3

2

6 7 8

Root-mean-square value of wind ve-

locity qwin m/sec

Figure 12.8. Probability distribution functions of root-

mean-square value of random noise for various weather con-

ditions. 1--clear weather; 2--cumulus clouds; 3--thunder-
storm conditions.
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"'_ -- too,', Vy = -- X -- G sin 0 -}- P cos _;

dVy
m -- + mo_] V_. = Y -- G cos 0 .-1- P Sill a;

dl

J. _ = ,'HA ..

0 = 0 +.a; " "

dxg _ Ve cos 02;
dt

dye _ V e sin 0.,;
dt

02 = 0 -k %;

v= / +
• _y .

e_ -_ arc tg _,

, dO ' ..

dt

(12.13)

in these equations V and V are projection of the ground speed and not
x y

the air speed, because the inertia __forces are determined by the acceleration

of the missile with respect to Earth. However, the aerodynamic forces and

moments (X_ Y, Mz) depend on the air speed of the missile. Before grouping

the equations contained in system (12.13), we take into account several re-

lationships between the quantities which they contain in order to introduce

possible simplifications.

First of all we assume that the wind velocity _ is substantially less than

the velocity of the missile (both the air velocity and the ground velocity).

This assumption makes it possible to introduce a series of approximate rela-

tions which substantially simplify the system of equations (12.13). Such re-
lations include

my _arctg-_ _" wy .
%:arctg v._+wx , v ""--¢-'

v =Vw.v  v;
V_ _. V -- w_. • "

(12.i4)

The assumption that the wind velocity is small compared with the velocity

of the missile permits us to neglect the second term in the left side of the

first equation of (12.13), compared with the first term.
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Figure 12.8 shows graphs of the distribution functions for the meansquare
values of randomnoise _w for the indicated weather conditions. These graphs

have the samemeaning as those in figure 12.7. By comparing the curves in
figure 12.8 we may conclude that for the samevalue of the probability, the
root-mean-square values of the wind velocity _w for cumulus clouds is app_oxi-

mately twice as large as its value for clear weather, while for thunderstorm
clouds it is approximately three times greater. The reduction of statistical
data shows that the time of flight under thunderstorm conditions is approxi-
mately 0.05 percent of the entire flight time, while the flight time in cumulus
clouds is ipercent. The flight time under conditions of turbulence in clear
weather in 10 percent, while the remaining 88.95 percent is occupied by flight
in an atmospherepractically at rest.

All of the data presented above on the variation in the root-mean-square
value of randomwind as a function of flight altitude and weather conditions
are obtained from the processing of a large amount of statistical information
collected by U.S. airlines. I Therefore, these data are valid only when a
specific method adapted by these airlines is used to plan flights and does
not reflect with sufficient objectivity the state of the atmosphere. There-
fore, as we have pointed out, these data must be looked upon only as illus-
trative material, showing which characteristics of the turbulent atmosphere
must be obtained.

/38O

Section 12.3. Controlling the Motion of a Missile in a

Disturbed Atmosphere

Provision for wind in the equations of motion of a missile is made in

a different manner for various coordinate axes which are used to describe

this motion. If we use the flow axes_ the equations contain additional terms,

which take into account the " mobility" of this system due to the wind. When

body axes are used, these terms are absent. The aerodynamic forces and moments

are obviously dependent on the air speed which is associated with the wind ve-

locity by relation (12.1).

On the basis of these general considerations we obtain the equations for

the longitudinal and lateral motion of a missile in a disturbed atmosphere.

i. The Equation for the Longitudinal Motion of a Missile in a Disturbed

Atmosphere. Figure 12.9 shows the forces which act on a missile during its

longitudinal motion when wind is present, and which are used to derive the

equations for the coordinate system.

When the missile moves with a variable velocity in an atmosphere at rest,

the longitudinal motion is described by equations(8.51 ). When the movement of

the air is taken into account, these equations take the form

I 2
See footnote on page 366.

373



/4 • • Y2,_y " " " .

Figure 12.9. Forces acting on missile during longitudinal

motion when wind is present and the utilized coordinate

systems _B = _ wind; _B = _air" x_-- Y_--fixed or Earth

axes; horizontal axis x is directed along course of mis-
g

sile, y axis is vertical; x, y--flow axes; x-axis is
g

directed along the air velocity of the missile, the y-axis

is perpendicualr to it; Xl, yl--body axes fixed with respect

to missile; xl-axis is directed along chord of wing, Yl-axis

is perpendicular to it; x , y are associated axes; x2-axis
2 2

is directed along ground velocity of missile, i.e., along

tangent to its trajectory with respect to Earth; Y2-axis is

directed along normal to this trajectory; G--weight of the

missile; P--thrust of engine; _--ground speed of missile;

B--air velocity of missile (velocity with respect to
ground); _--velocity of air with respect to ground. The fig-

ure also shows components of vector W which must be taken

into account when adding velocities of missile and wind as

pointed out; _--pitch angle; e--slope of air speed vector;

e --slope of trajectory; _--angle of attack; _B--component2

of total angle of attack _ due to wind.

Taking into account (12.14) and the last assumption and replacing the

values of X, Y, and M by their expressions from equations (8.23) - (8.25),
Z

we group the equations in system (12.13). The group of equations which de-

scribe the motion of the missile's center of gravity in a disturbed atmos-

phere has the form
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dV

dt
c S _g*

c_.S_V_ + _. -T" = -- 0 sin 0 + P cos _.;

dxg
-- V cos 02;

dt

dgg
-- V sin 02;

dt

02=0 + Y-_<.
V

(12.15)

The components in wind velocity w and w contained in equations (i2.i_)
x y

i
as well as the engine thrust P are considered to be known , i.e., in the solu-

tion of system (12.15) they must be given as functions of time. Solving the

first of equations (12.15) by the methods recommended in section 2.4, we find

the flight velocity as a function of time. Then, from the fourth equation

we determine the slope of the trajectory 8 2 and, finally, if necessary, we

can use the second and third equation to obtain the coordinates of the mis-

sile's center of gravity with respect to the Earth axes x 0y .
g g

The group of equations which describes the motion of the missile with

respect to its center of gravity, taking into account the wind, has the form

mv dO -- c _S pV*
d"T x 7a +GcosO--Psin ==

dt D ......... •

tOx) d=
.I, -_.--. m, "50"t 2-- at mz Sb2A• . ., .2 dt

--m_Sba P(g--wx)== = tnat4Sb a P(v-t_x)' nt.
2 2a

o .

+ m _,Sba p (V-- w.) 2 6,; :' "" ..
2

0.=0 + a.

(12.16)

Since the ground velocity of missile V is determined from equations

(12.15)_ while the components of the wind velocity w and w must be assigned,
x y

after linearizing the functions cos 8 and sin _ by means of some assumption,

the entire system of equations (12.16) is transformed into a linear system

i

In equations (12.15) and below, the effect of wind on the thrust of the engine
is not taken into account.
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with variable coefficients. In spite of somecomplexity, this system makes it
possible_ in principle_ to analyze the effect on wind on the flight of a mis-
sile whose velocity is variable.

The equations for the longitudinal motion of the missile, taking into
account the wind, which are obtained by the method of linearization_ are
somewhatsimpler. Without repeating all of the considerations on the effect
of the moving atmosphere_which have already been used in deriving equations
(12.15) and (12.16), we showonly the final form of the linearized equation

(12.17)

The coefficients of equations (12.17) are determined by meansof equations
(8.27).

2. The Equations for the Lateral Motion of a Missile in a Disturbed

Atmosphere. Figure 12.10 shows the coordinate systems used for deriving the

equations for the lateral motion of a missile when wind is present.

As in the preceding subsection of this section_ we consider first the

more general case of motion in a disturbed atmosphere when the missile has

a variable velocity. When a missile with variable velocity moves in a fixed

atmosphere_ the lateral motion of a plane-winged missile is described by
equations (8.54) .

If we take into account the movement of air_ these equations must be

written in the following form:
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d_ d ° d'5
mV "" -- mV ,,e_ _ mV---_' = Z;

dl dt dl

J x d_'-Z_= 34.,.;
dt

j d2+

" _;_- Vsin%;

' 06.= ¢ -_+ _,;.

V

(12.18)

xz
i

Figure 12.10. Forces acting on missile during its

lateral motion in presence of wind. z --Earth
Xo-' g

axes; horizontal axis x is directed along course of
g

missile; Xl_ zl--fixed axes; x2, z are associated2

axes; V--ground velocity of missile; VB--air velocity

of missile; W--velocity of wind with respect to ground;

_--yaw angle; e6--angle of rotation of air velocity

vector; e --angular rotation of the trajectory; _--
d2

slip angle; _B--component of slip angle due to wind;

Z--lateral force perpendicular to longitudinal axis.

Equations (12.18), in the forr_ in which they are written, contain only

the ground velocity of the missile. The second term in the first expression

appears because the force of inertia is determined by the acceleration of the

missile with respect to the ground

_-----_= v± :in(_- _.)]_V _-v d_
dt dt dt dt "
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However,

the missile.
velocity from
missile

the force Z and the momentsM and M depend on the air speed of
x y

Using the approximate expression (12.14), which determines this
(12.18), we obtain the expendedequations for a plane-winged

mvd_----mV d_ --c_S
dl dt

p (V-- " " dwz._")" _ Gsin =--mo-- T --,2 dt

L'- I" p(V -- Wx) dT -j l2 p(V -- Wx) d'_J x _ lH.xr S z'-a- -_ _ - Iltxy S 2 2 dt

•2 2

Jy d_'_-- @yS l, p(v - _.,-)d,_ _ %,_ s r- p(v _±__) =d:fdt* 2 2 dt 2 .' at

" = mySl - "2 2 6cr; -

dz-A-_ = -- Vsin 06,;
dt

V J

(12.19)

After linearization with res:_cz to the function sin y on the basis of

some assumption, the first three equations become linear with variable co-

efficients. The flight velocity V must be known from the solution of equa-

tions for longitud_na! motion (12.15)_ while the velocity components of the

wind w and w must be assigned.
x z

For a missile with cruciform wings with a stabilized tilt angle, the

equations for the lateral motion in a disturbed atmosphere have the form

mV d___ mV d+ _ c_,S P0,'-- _)_ _= .- m _,
• . dt . .dt 2 dr' . "

d2_ z _ S t_ p(v--_._) d,,_ ': 1=p_'w._) d_
JY dt"--T_ //YY ' 2 2 dr. m_yS 2 2 dt

dz----_-e.= -- V sin %,;
dr.

06, = o--[_-- w--z-_.
' V

(12.20)

In the investigation of the lateral motion of a missile in a disturbed

atmosphere by means of linearized equations, the flight velocity V is con-
e

sidered constant. Therefore, it is possible to _e into account only the
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wind velocity componentw normal to the given flight direction. Wepresent
z

the final formulas of these equations for the case of flight in a disturbed

atmosphere. For a plane-winged missile I

d_; " 1 dw z'fl_L,"+ k_ d._ % -- -- k?f --
dl dt dl Ve dt '

_i*-"T d f d.b -

dr- + li -_- + l,;e _' q- l_ _ = b,ai6ai + l,;;cr6Cr ;

d_-_ d.5 dT n;_,_== n_ . 6ai + tz,; ;dt_ ÷ n_--_--_ ni-_-+ al cr 6cr

dzg

dt - v, (_ - _) + w,.

(12.2z)

i
For a missile with cruciform wings and with a stabilized angle of tilt

d_ d_b 1 dw z

at ÷ k_S,-- -- -.
dt Ve dt '

d"-+ + n._ d._ "d_
dr' -_- + n_i -_- -t7 n_,_ = n_cr6 cr ;

e_.___= lie 6--q,) + w,.
dt

(12.22)

The coefficients of equations (12.21) and (12.22) are determined by

equations (8.43) and (8.45).

Section 12.4. The Effect of the Constant Wind Component on

the Motion of a Missile

i. Missiles with Variable Flight Velocity. As shown by equations (12.15),

(12.16), (12.19) and (12.20), it is impossible to _ualyze the effect of the

wind on the motion of missiles with variable velocity in a general form. In

the case of a specific missile, the necessary calculations can be carried out_

the corresponding functions of time can be obtained and these equations can be

used to determine the effect of wind on the missile trajectory. However, if

the problem is simplified as much as possible_ it is then possible to make

interesting qualitative conclusions concerning the effect of wind when the flight

velocity is variable.

i

In equations (I_21) and (12.22)_ the sign for dzg/dt is determined by the

kinematic relationships of the problem; the variation of this sign will be
discussed later.

380



Let us consider three problems v_hichdiffer in principle. In the first
problem we shall take an uncontrolled missile which has static stability. Let
us assumethat this missile moves in a straight line with acceleration j (fig.
!2.1!a): The acceleration _ is due to the excess of the thrust over the drag
and is directed along the axis of the missile. At someinstant of time, when

a lit V,
b

Figure 12.11. Diagram showing effect of lateral

wind on stability of unguided missile.

the missile velocity is _ , it enters an air stream which is perpendicular
0

to its direction of travel and which has a velocity W. Since the missile is

stable after the transient process produced by the lateral wind is over, the

axis of the missile will coincide with the direction of the air velocity

vector VB, given by expression (12.1). If, for simplification, we neglect

the period of this transient process, then immediately after the missile has

entered the stream of air it will assume a new position, shown in figure

12.11b due to its stability.

Actually, the missile will turn by an angle which is somewhat smaller

than _B and the lateral force will appear, which will cause the vector

of the ground velocity to rotate in the direction of the wind until the

drift velocity of the missile becomes equal to the wind velocity. At the

end of this turn, the longitudinal axis of the missile will occupy a posi-

tion in space shown in figure 12.ila. The rotation of the ground velocity

vector takes place very slowly and may not be completed during the_ight time

of the missile to the target. _hile the axis of the missile is deflected

from its original direction, the missile is subjected to an acceleration 7,

perpendicular to this direction. The missile will deviate from the initial

trajectory against the wind direction under the action of this component.

if the flight time of the missile to the target is less or is close to the

turn time of the ground speed vector, its trajectory, when it moves with

substantial acceleration, may be deflected from the initial direction

against the wind, in spite of the drift. Missiles which move with a con-

stant velocity or which are decelerated are always deflected from the initial

trajectory in the direction of the wind when they are subjected to a lateral

wind.
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In the second problem, we consider a missile whose control system ideally

maintains the fixed position of its longitudinal axis in space. The position

of such a missile, after it has entered a lateral air stream, is shown in

figure 12.12. A slip angle _B due to the lateral wind has occurred between

the longitudinal axis of the missile and the air velocity vector V . Due to
B

this slip angle, a lateral force Z will occur, which will cause the ground

speed vector of the missile to deflect from its initial direction into the di-

rection of the wind vector. The indicated direction of drift will take place

for any law governing the variation in the flight velocity of the missile. The

action of the lateral force and, consequently, the rotation of'the ground ve-

locity vector, will cease when the drift velocity becomes equal to the wind

velocity.

Figure 12.12. Diagram showing action of lateral wind

on missile whose longitudinal axis is ideally stabilized

in space.

_ne third problem refers to _>e case when the missile control system tries

to maintain the missile's center o_ gravity along a definite fixed trajectory.

Systems of this type were considered in Chapter II. In this case, the wind

will play the role of a perturbing force and will produce a static error in the

position of the center of gravity on this trajectory, if special measures are

not taken to eliminate this error.

2. _ne Motion of Missiles with Constant Flight Velocity. Since the _c_ion

of missiles with constant flight velocity is described by linear differenti_al

equations with constant coefficients, it is possible to analyze this motion in a

disturbed atmosphere in a general form. The equations presented in section 12. 3

for the motion of the missile will be combined with equations of the automatic

pilot and will make it possible to determine the variation in any of the param-

eters of missile motion when the missile flies in a distrubed atmosphere. We

present several examples of such investigations.

Let us consider the lateral motion of a missile with cruciform wings, which

carries an automatic pilot with fixed feedback for controlling the yaw angle of

the missile. Combining the first two equations of (12.22) with the equations of

the automatic pilot (10.49), we obtain the following system
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d_ d'_ -_-
d'-T+ 4_ - _ I d_, .

dt Ve dt '

+ n_ d+. +. n_ + n_,_=v. dt -_- ;.t_crSCr;

(12.23)

On the basis of this system of equations we find the transfer functions

for all the angular parameters of lateral motion when there is a lateral wind

w
z

W_/_,_(p) = (':;p + ":')p.
VeA (p) '

[p'-l-(n._ -_-i_n 8 cr )Pq-'!¢n6cr]P

W_/_,.(p) = -- -
V_A _o)

-,[P' + ("_ + "+-+ "+"8c r) p + "_+ "*"' 8cr ]£

IVOcr% (P) _ V,A(p} ;

(12.24)

(12.25)

(12.26)

The denominator A(p) in transfer functions (12.24)--(12.26) has the follow-
ing form

A(p) =p3 h- (ax -b i+ bt)P' -b (a= Jr i+ b= q- 4b,)P q- 462,

where the coefficients al, a , b and b are determined by equations (10.48)2 1 2

Figure 12.13. Graphs for variation in lateral devia-

tion of slip angles and yaw angles when missile with

cruciform wings enters lateral stream.of air.

With these transfer functions we can analyze the behavior of a missile with

an automatic pilot which controls the yaw angle, when there is a lateral stream

383



of air with velocity w (for ex_pie, a jet stream). Figure 12.13 shows the
z

nature of variations in parameters 6, _ and Z , when the missile enters a
g

lateral stream with a constant re! city (w = const). As follows from the
z

graphs in this figure, slip angle _ increases in a discontinuous fashion to

a value -w/V and then drops to zero. The deviation of angles _ and 8_ from
z e O

assigned values also tend to zero, [see equations (i2.24) and (12.26)]. After

the transient process is over, only the angle of rotation of the trajectory 0C 2

differs from zero and is equal to-w /V . As a result, as follows from the
z e

third equation of system (12.22), the missile will drift in the direction of

the wind with a velocity equal to the wind velocity

dzg

d'-7-= w_. (12.27)

Let us see how a constant wind reacts on a missile whose center of gravity

is stabilized along an assigned trajectory by means of a control system.

If we take the simplified equations for a missile with cruciform wings

(ii.i) and take into account the lateral wind, it will turn out that this wind

does not produce perturbations in the motion of the missile's center of gravity.

_nis result is explained by the nature of assumptions made in deriving eqution

(ii.i). Since the motion of the missile with respect to the center of gravity

is assumed to be without inertia, when it enters a lateral wind of constant

force the missile instantaneously turns by a slip angle produced by the wind and

continues to move along the assigned trajectory. Thus, the assumption used to

derive equation (ii.i) is unsuitable for analyzing the behavior of the missile

subjected to a lateral wind, because in this case the result is qualitatively
incorrect.

If we utilize the second method for simplifying the problem, in which the

turning of the missile is accomplished without inertia, but by means of an

automatic pilot which controls the angle of yaw [see equations (11.7) and 11.8)],

the result becomes quite different. In this case, the motion of the missile with

an automatic pilot is described by a system of equations I

d_ d+ 1 dwz
77 + k3 -- =dt Ve dt '

dz--x_= V,('_ -- _) -- _,;
dt "

=%;

% = (zaz %).

(12.28)

iAs in Chapter ii in equations (12.28), the derivative z

sign. g
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_ne functional diagram shownin figure 12.14 corresponds to these equations.
_mis special feature of this diagram is that the action of the wind on the mis-
sile is introduced at two points.

If we eliminate all variables from the system of equations (12.28) except z ,
g

we obtain the following equation

d2z E dzg -I. "
+ k_ _ , i, kyezg _- i,ky, z_d_+ k_,.

(12.29)

From this it follows that the established deviation of the missile from the

assigned trajectory produced by lateral wind is equal to

z_=Zai-Zg----- izVe

(12.30)

The nature of the trajectory of the missile's center of gravity when it

hits a lateral wind may be quite diverse. It is determined by the roots of the

characteristic equation of differential equation (!2.29). Since the damping

coefficient in equation (12.29) does not depend on the parameters of the con-

trol system, efforts to decrease the deviations z by increasing i lead to a
B z

decrease in the relative damping of the system and, consequently, to oscillations

of the center of gravity of the missile. This situation is illustrated in figure

12.15, which shows the trajectories of the missile with various values of the

transfer number i , which have entered the lateral wind at the point x = 0.
z g

Figure 12.14. Functional diagram of system for con-

trolling center of gravity of missile with cruciform

wings corresponding to equations (12.28).

Finally, let us consider, without simplifications, the problem of a missile

with cruciform wings with a system for controlling the motion of the center of

gravity, when this missile enters a lateral stream of air which has a velocity

Wz. For this purpose, we change the sign in front of dZg/dt and combine the
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Zai _ ttt_ .
z 'l _1.1_ •

Figure 12.15. Trajectory of center of gravity

determined by equations (12.28) and control law

(12._).

system of equations (12.22) with_the equation for the automtic pilot, which has

a sufficient general control law i

t

_cr = i_ let - -&-I + 4 (zai- %) q" q, _.
o

-- 4 _ -- 4'I,.

(Zai-z_) dt --
(12._)

Figure 12.16 shows the functional diagram corresponding to this system.

The transfer function of this system for lateral deviation when

• .. .

Figure 12.16. Functional diagram of system for con-

trolling center of gravity of missile corresponding

to equations (12.22) and(12,31).

subjected to a lateral wind, is obtained on the basis of equations (12.22) and

(12.31) and has the form

_,_7Zg/=z(p)=. k_[P'_,(n_--_-(_,n,)p-_-i_,n,]'p (12.32)
.A (9)

i
An automatic pilot with such a control law has already been used in a system

of equations (11.14).
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where A(p) is a complete polynomial of the fifth degree identical with the
characteristic polynomial of equation (11.15).

On the basis of the structure afthe transfer function (12.32) we can make
the following conclusions concerning the motion of the center of gravity of a
missile with cruciform wings when it enters a lateral air stream.

After the damping of the transient process, the center of gravity will move
along the assigned trajectory, i.e., the system is astatic with respect to the
lateral wind of constant velocity. If we select the parameters of the control
system in accordance with recommendationgiven during the analysis of equ tion
(11.15), the transient process produced by entry into the lateral air stream
will have an optimumnature. Figure 12.17 shows the trajectory of the center
of gravity of a missile with an automatic pilot operating with control law
(12.31 ) when it enters a lateral air stream.

The behavior of a plane-winged missile when it enters a lateral air stream
of constant velocity differs from the behavior of a missile with cruciform wings
considered in this section. In principle, this difference is that all the lateral
movementsare accompaniedby a variation in the tilt angle. By using equation
(12.21), which describes the lateral motion of a plane-winged missile, taking
into account the lateral wind and also the equations of the automatic pilot with
various control laws presented in section 11.3, we obtain a general differential
equation or transfer functions for the lateral deviation z when there is a

g
lateral wind. From these data we can represent the total characteristics of the

Lv/

LOz.

Figure 12.17. Trajectory of missile's

center of gravity when control law

(12.31) is used.

missile with any control system. As an exa_nple, we shall consider the simplified

equations of the lateral motion of a missile with plane wings (11.27), but which

are written taking into account the lateral wind

-aq, o;
dt

dzg

at- - w,.
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Figure 12.18. Trajectory of center of gravity of

missile with transfer function (12.33).

Combining these equations with the equation of the automatic pilot (11.28),
we obtain a transfer function for the lateral deviation under the action of

lateral wind

W._% (#)= P (12.33)
A _)'

where A(p) is the complete polynomial of the second order identical with the

characteristic polynomial of differential equation (11.30) . The trajectory for

the center of gravity of a missile with transfer function (12.33), when it enters

a lateral stream of constant velocity w , is shown in figure 12.18.
z

The longitudinal motion of a missile, when it enters a vertical (ascending

or decending) stream, does not differ in any way from the lateral movement of

a missile with cruciform wings in _ lateral stream considered before. On the

basis of system (12.17) and the equation of the corresponding automtic pilot, it

is easy to find the transfer functions for any of the parameters of longitudinal

motion. We note that in investigating the effect of wind there is no necessity

for using the equation for longitudinal motion (12.17). In the overwhelming

majority of cases, it is possible to use simplified equations for short period

motion (10.66) or (10.69), and also the simplified equations presented in section

11.4. it is obvious that all of these equations must contain additional terms,

which take into account the effect of wind on missile flight.

._ I,o . _,5-------2.o t, sec
0 "

Figure 12.19. Graphs showing variation in altitude

and angles of attack and pitch when missile enters

vertical stream of air.
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As an example of longitudinal motion in a disturbed atmosphere, figure

12.19 shows the graphs for the variation in the angles of pitch (AO) and angles

of attack (A_) with flight altitude (Ayg), produced by the entry of the missile

into a vertical stream of constant velocity. The missile is equipped with an

automatic pilot which controls the pitch angle. These graphs are similar to the

graphs in figure 12.13, which illustrate the lateral motion of a missile with

cruciform wings and an automatic pilot which controls the yaw angle when a

lateral air stream is encountered. All the results obtained for missiles with

cruciform wings, and with an automatic pilot which controls the position of the

center of gravity with respect to the assigned trajectory, remain valid for the

case of longitudinal motion due to the vertical wind.

The new feature in longitudinal motion is the possiblility of taking into

account the wind component directed along the trajectory of the missile. It is

necessary to investigate this question in more detail. Let us examine the be-

havior of a missile which enters a favorable wind or a head wind with a constant

velocity w = cost. To simplify this problem, we neglect the transient processes
x

of short period motion, which is equivalent to the assumption that the missile is

balanced instantaneously. We assume that the missile has no system for control-

ling its speed. Finally, we consider the equation of the missile without a con-

trol system because it will be shown below that the control system will not af-

fect the results which will be obtained after the analysis is carried out. On

the basis of these assumptions we find from system (12.17) the following equa-

tions for analyzing the behavior of the missile, after it enters a favorable
or head stream of air

d_V " "

•i a_AO.-_ a_A:_. -1- y .q- avAV = avWx; (12.34)

a,a..__8_ b6_O-_ b_,_a -- bvAV = , bvWx;
dt .

.. .-"

c.a + ci, V = cvw . .

The system of equations (12.34) makes it possible to obtain the transfer

function for the parameters of longitudinal motion, when a favorable wind or a
head wind is encountered.

The transfer function for the variation in the ground speed is

WavI% (P) = blp + a2
• c_p_ -t" avo q- as (12.35)

where

al = arC, -- boc., -- a,,cv; ]

a 2 = c,c 2-- clcv;
bL _ avCz _ aacv.

(12.36)

The value of coefficient c and c
2 4

is determined by equations (8.30) .



On the basis of the transfer function (12.35) we may conclude that in the
= (p) = i and, consequently, AV = w x. Thus the

stationary state (p 0), WAV/w x

ground velocity of the missile will increase exactly by the value of the favor-

able wind velocity or will decrease by the value of the head wind velocity. _ne

air speed of the missile will retain its initial value.

We obtain the following transfer function for the slope of the trajectory

p (b.q, -- b_.) (12.37)W,o/=,.('p) =
c.P _--k alp -["az

Finally, the transfer functio_ for the angle of attack has the form

P (p - be)_v ( 12.38)

The presence of the factor p in the numerator of the transfer functions

(12.37) and (12.38) shows that in the steady state (p = O) the variation in the

slope of the trajectory and in the angle of attack will be equal to O. It is

Figure 12.20. Graphs showing variation in ground

velocity and slope of trajectory when missile enters

favorable streamof constant velocity.

precisely these results that have made it possible to carry out the analysis

without taking into account the control system, because the inclusion of this

system merely complicates the system of equations (12.34) and gives nothing

new for the characteristics of the steady state flight in a favorable or in a

head stream. The control system would obviously have a substantial effect

on the nature of the transient processes.

Figure 12.20 shows the nature of variation in the ground speed and in the

slope of the trajectory produced by the entry of the missile into a favorable
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air stream with constant velocity w . The weak damping of the oscillations is
X

explained by the fact that this missile has no Control system and, in this case,

the long period motion us_ually has the nature of slowly damped oscillations

with a large period.

Section 12.5. The Effect of a Random Wind Component on the Motion
of the Missile

We shall consider the effect of a random wind component only on missiles

with constant flight velocity, because when a missile flies with variable speed,

it is very difficult to take into account the effect of a random wind component.

In the latter case, the simplest approach consists of using the method of fixed

or quasifixed coefficients, as a result of which the problem is reduced to the

analysis of ordinary differential equations with constant coefficients, i.e., to

mathematical methods used to describe the motion of missiles with constant ve-

locity.

Section 12. 3 derived equations(12.17) for longitudinal and equations (12.21)

and (12.22) for lateral motion of the missile, taking into account the effect of

wind. These equations are valid both for a constant as well as a random wind

component. However, in analyzing the effect of a random component, special

mathematical methods are used; therefore, this question requires additional

analysis, which is presented in the present section.

The problem of practical interest consists of determining the effect of the

random wind components normal to the plane which contains the wings of the mis-

sile. For plane-winged missiles this component will be w , while for cruciform
cy

wings it will be w and w . These components produce a variation in the angle
cy cx

of attack or in the slip angle (for a missile with cruciform wings), and thereby

change the basic control force--lift force or lateral force. The longitudinal

component of the random wind w , due to the large inertia of missiles, pro-
CX

duces no noticeable effect on their flight. The transverse component w also
cz

produces no substantial effect on plane-winged missiles, since the lateral force

produced by the slip angle due to wind w is small for these missiles.
cz

Thus, for both types of missiles it is of interest to establish the effect

of a random wind component w and for missiles with cruciform wings also to
cy

determine component w On the basis of these considerations we examine the
CZ"

longitudinal motion of the missile and of the effect produced by the normal com-
ponent, of the random wind vector w .

cy



After the usual simplification, weobtain from equations (12.17) a system
of equations which describe the longitudinal motion of the missile when sub-
jected to a randomwind componentw i:

cy

dAV .
aoAO + a_,,A:_+ --_ 4- avAV --- O;

da..___O0_ boAO -. b,,-_x -- bvAV = -- I__[_.dw____L;
dl V¢ dt

dt---_.+ c_ 7 + c; --_ -+.c,aa + cvAV. = c_,a6.;

AO = AO at- A_.

(12.39)

In studying the reaction of the missile to the random wind component, which

characterizes the succession of random gusts of arbitrary form, the effect of the

variation in the ground speed is small. Therefore, without introducing an ap-

preciable error, we may neglect these variations and let AV = 0. As a result of

this assumption, the first equation of system (12.39) drops out and the system
assumes the form

daO bo'AO-- b,A_ = " I dwy .
dt V¢ dt '

d2A'q +C6 daa . dAa
at-----;- -d-/- + c: _ + c, aa = c,a6.;

, AD= AO+ zx:,.

(12._o)

On thebasis of equations (12.40) we can obtain transfer functions for any

parameters of longitudinal motion without a control system, when the wind

action is normal to the flight direction. For example, the transfer function

for the pitch angle has the form

V¢ Oas + alp _ + ano + aa) '

(12._1)

a are determined by equations (10.7]-).
where the values of coefficients _, a2, 3

The transfer function for the slope of the wind air velocity is equal to

i

This system of equations and all :_ubsequent equations are valid both for a ran-

dom as well as for a constant component of normal wind; therefore, in these

equations the subscript "c" of the wind component is dropped.
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• _ " ....: ' [p'+@;+c=i)p+z=]p
W,,8/,,,y(p) = v, (p_+ aap'+ a_ + a=)"

(ia.42)

To determine the value of the normal load factor which occurs when the mis-

sile flies in a turbulent atmosphere, it is necessary to establish the relation-

ship between the load factor and the parameters of longitudinal motion contained

in the system of equations (12.17). The acceleration which acts in the vertical

plane, normal to the direction of flight, may be represented by the following

equation when wind is present

d_Ycr= Ve d&O2 _ Ve d-_O . dwydr, _7 -Z + -_ "
(12.43)
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From this we establish the normal load factor

n,= _d--_r: V, d_O_ k d=__.z. (12.44)
g dl_ g dl g dt

Combining equation (12.44) with system (12.40) we obtain the transfer func-

tion for the normal load factor, when the normal component of the wind is acting

(missile without a control system)

[(b,_ b_)p,+ (,,,- _=)p+ ,,,1p
_"/_y (P) = e p_+a_" + a_,.+ a,

(12.45)

We note that the application of transfer functions (12.41), (12.42) and

(12.45) to the study of the missile's reaction to the constant component of the

normal wind is limited, due to the assumption that the ground speed is constant

(AV = 0), which was made when these equations were derived. When we investigate

the motion of the missile under the action of constant wind, we should find the

corresponding transfer functions on the basis of a complete system of equations

for longitudinal motion (12.39). The transfer functions (12.41), (12.42) and

(12.45) may be used only to describe the initial stage of motion under the action

of a constant wind, during which the short period motion is practically terminated.

Let us find the transfer functions for the parameters of longitudinal motion

under the action of normal wind in the case when the missile has an automatic

pilot controlling the pitch angle. Combining the equation of the atuomatic pilot

&of . aa_ , . (12 !,_6)

with the system of equations (12.40), we obtain a transfer function for the

pitch angle in the presence of a normal wind

_ (P) = -- (_; P + c,) P .-

F, [P'+(ax+G. bOp=+(a,÷4b=+ q bop ÷ a,+4b,] ' " (12.47).
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where the coefficients a , a , a , b and b are determined by equations (10.71).
i 2 3 i 2

The transfer function for the load factor has the form

IV,,/_,y(p) = I [(bo-- b0)p'+ (a,- _.+ ,',_b..)p -I-o_+ 4t,d p
g Pa q- (al l- i_ bop' -]- (a 2 q- iabl.q- i_ b2) p -[- a a "Jc i_b=.

( la. _8)
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If we note that the load factor and the linear deviation normal to the

flight direction are associated by the relation

l t

o e

we can find from equations (12.44), (12.45), and (12.48) the transfer functions

for the linear deviations of the missile from the trajectory of unperturbed

flight:

missile without control system

WYcr I=y(P)-_ (b='bo)P'-t- (a,--c=)p+a= .. p _ + a_ + a_+ a=) '

missile with an automatic pilot which controls the pitch angle

_ c r '__) = (b. - bo)p' + (a,- c. + t_ b=)p + a, + t+b, .
p [p,+ (a,+ 6 bop'+.(a,+ 4b_+ i_ b,)p+ o=+4b,]

(12.5o)

(12 5l)

From the structure of the transfer functions (12.50) and (12.51) we may

assert that the flight altitude of a missile without a control system and with

an automatic pilot which controls the pitch angle will vary continuously under

the action of a normal wind with constant velocity.

Finally, let us find the transfer function for the linear deviation from

the assigned trajectory produced by the action of normal wind on a missile, which

has a system for controlling the center of gravity. In this problem we use the

complete equations for the longitudinal motion of the missile (11.42), in which

the variation in the ground speed has been considered. Terms which take into

account the normal wind component should be introduced into the right side of

the second and fourth equation of this system. In addition, the equation of

the automatic pilot (11,46) should be added to equations (11.42). The transfer

function for the system which controls the center of gravity during deviation

from the trajectory YH under the action of normal wind is determined from these
equations

• = (bapa+b_'+b_+bap (12.52)•W_er % (p) p_+ a,p, + a_, + a_' + a_, +am + a,'
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where

b I ---- b,, -- b_; ].

b.2 = e, -- boc; l- c_ (b,,---b,,) -F b=c_ (i,i -I- i_ )-- I--i_'boce,

b_ ----c, (c_ + iC,cO -- b,,c. + ioc_,(b. -- b,,) -_ }

-_-c2c; + c.j6 c_-F iob=c,:,

b_ -- c,i_c_ + c,2c=+ c3i_c_ -- c4c v.

(12.53)

The values of the coefficients in the denominator of transfer function

(12.52) are determined by means of equations (11.48), while the coefficients

cl, c2, c and e are determined by equations (8.30) .3 4

_ne presence of factor p in the numerator of the transfer function (12.52)

indicates that the automatic pilot with integral control [see equation (11.46)]

provides for the astaticism of the system with respect to the normal wind.

Under the action of the normal wind of constant velocity_ the missile with such

an automatic.pilot will move along the assigned trajectory after the termina-

tion of the transient process.

7he transfer functions obtained above for different parameters of longi-

tudinal motion make it possible to determine the values of these parameters

from the spectral density of the wind component normal to the flight direction.

In this case, it is necessary to use the well-known relations (2.39) between

the spectral density of the input and output quantity in a linear system

s, (0) = I_, (i0)l_s_ (=). (12.54)

From the spectral density of the output quantity and from e_uations (12.5)

and (12.7) we can obtain the correlation function and the dispersion or the

output quantity.

in the practical application of equations (12.11) and (12.12) for the

spectral density of the random wind components, it is necessary to transform

from one independent variable--the spatial angular frequency _, to another--

the time angular frequency w which is used in the transfer functions of a mis-

sile. The relationship between these variables is given by equation (12.8).

Let us establish the relationship between the functions of spectral density

for the random wind expressed in terms of these angular frequencies. On the

basis of dispersion equation (12.7) we obtain the identitY

2
(o)da= S(=)d=.Ocu

.. 0 o ..;

(12.55)
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Taking into account relation (12.8) we obtain from identity (12.55)

s (,,)= isv, (o). (12.56)

Equation (12.8) and (12.56) make it possible to transform to the variable

w in expressions (12.11) and (12.12) for the spectral density

• 2 L l-_-3(,.,L/Vr)'-
Sl(_) o. _,

_.v, 1] -t-(_L/V_)_I , ,

(z2.57)

L 2
S, (-) = o_ _.

,.v, _+ (.L[V,)' " ' (12.58)

Let us substitute the value for the spectral density of the normal wind com-

ponent (12.57), which we obtained in the basic relationship (12.54)

2 I q- 3(,.,L/V,)' (12.59)

II + (-L/V,)_I'

Finally, by means of equation (12.7) we find the expression for the dis-

persion of the input quantity, when the normal random wind component acts on
the missile

=. 2 L _ l + 3(,,L/V,),
°, = °,_ j lwy(i")12 d_,._.v, [l + (_,L/v,),],

0
(12.60)

Depending on the transfer function which is substituted into equation

(12.60), we obtain the dispersion of the pitch angle of the missile with an

automatic pilot or without one, load factors or the linear deviation of the

center of gravity from the assigned trajectory. We present an example to cla-

rify the method used in solving this problem.

Example 12.1. It is required to determine the root-mean-square value

of the load factor due to the normal random wind component, experienced by
a missile which flies horizontally at an altitude:

yg = 5000 _=(Pc= 0.736 re. ,_-s) with velocity V = 500 m/sec.
e

The parameters of the missile are as follows: m = I0,000 kg; S = 16 m2;

bA = 3 m; c_y = 5.0; b_ = 1.5; be = 0; c_ = 6.1 1/sec2; c._ = 1.0 1/sec; c_ = 2.1

1/sec; c8 = 6.2 1/see2; _n 290.
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The turbulence scale L is assumed to be equal to 300 m. The load factor

must be determined for two cases: flight without a control system and _light

with an automatic pilot controlling the pitch angle. The transfer numbers of

the automatic pilot are i_ = 0; i_ = 1.0.

We now consider the first case. The transfer function for the load

factor of the missile without a control system is given by expression (12.45).

By using equations (10.71) and substituting the values of the coefficients of

this function and noting tha_a = O, we obtain
3

1 l.Sp_+3.15p
W#y/_y(p)= 9.----'8" p2+4.6p+9,25 (12.61)

The square of the modulus of the complex transfer function according to

(12.61) is equal to

I 2._5(o'-[- 10o.2

. t;_i I[z#X/_vXu(.,i j_ __ 9.82 (9,25- ,,2)= j. 21,30,2
(12.62)

The spectral density of the normal random wind component according to
equation (12.57) is given by expression

S_y (e)= o2 300 1 -F 1.0Be_
"v. _,_ (1 + 0,36e2) _'.

(12.63)

5a,,(_)JlO S see

5

• " ..-

3

o 5 w. ;s 2o _//sec

Figure 12.21. Graphs for spectral density of normal

load factor produced by random wind.

Substituting the value of the square of the modulus of transfer function

(12.62) and spectral density (12.63) into equation (12.60), we find an expres-

sion for the dispersion of the normal load factor

_ _ 2, 25o)_ I_08_I "
o,y-_.y.l.98.1o-_ + 1o_, l + (12.64)

• " " " o (9-25--_2)'+21,3_ ' (1+0.36_,_)'..dw.
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The functions under the integral sign are represented in figure 12.21

(curve i) and take into account the constant factor. We compute numerically

the value of the definite integral (12.64) and obtain the following expression

for the dispersion of the normal load factor

an2y=0 0104_2 .
¢v_ .°

Finally, by taking the root of both parts of this expression we find the

mean square value of the normal load factor

% = o. 1o2%. (12.65)

Equation (12.65) shows that the root-mean-square value of the normal iaad

factor of the missile without a control system constitutes 0.102 g's for each

unit of the root-mean-square value of the normal wind velocity component.

If we have an automatic pilot controlling the pitch angle, the transfer

function of the missile for a normal load factor is given by equation (12.48).

After computing the values of the coefficients by means of equations (10.71)

we obtain

._1 (l.Sp 2 -[- 3.15p -_-9.3) p (12.66)
Wny/wy (P) : pa ___4,6p 2 -]- 15,45p -1--9.3g

/405

Leaving out the intermediate steps we write down the expression for the

dispersion of the normal load factor of the missile with an automatic pilot

which controls the pitch angle

.ny wy J (9,3.--4"6_'2)2 w=+ (15,.45- ¢"2)_'s X
• 0

1 --_ 1.08_ 2
-_ _ s dta .X.(l + o.36¢o) "

(12.67)

The function under the integral sign which takes into account the constant

factor is shown in figure 12.21 (curve 2). Having computed the definite integral

by means of equation (12.67), we obtain the dispersion of the normal load factor

_2 £ o.o258=_.
ay . . _

Taking the roots of both sides of this expression, we find the root-mean-

square value of the normal load factor

n. =0 16_w. (12.68)Y . " . Y

Comparing expressions (12.65) and (12.68), we see that in this example the

automatic pilot which stabilizes the fixed pitch angle of the missile leafis to

an increase in the load factor produced by the normal random wind component. In

most cases, the effect of the automatic pilot is opposite to this.

398



The same method may be used to obtain the root-mean-square values for the

oscillations of other parameters of longitudinal motion due to the normal com-

ponent of random wind. The action of the random wind component, which coincides

with the flight direction, may also be evaluated by this method. For this pur-

pose it is necessary to obtain transfer functions for some parameters of longi-

tudinal motion and to use expression (12.58 ) for the spectral density of random

wind. However, as we have pointed out, due to the large kinetic energy of the

missile, the action of random wind on longitudinal motion of the missile is

insignificant.

This method, where the normal wind component acts on the longitudinal motion,

is completely applicable to the case of lateral motion. Due to the isotroi_ic

nature of atmospheric turbulence, the equation for spectral density (i2. _-_Pl),

which describes the random component w _must also be used for describing the
Y

spectral density of component w , which is normal to the flight direction dur-
z

ing lateral motion. All of the transfer functions for the parameters of the

lateral motion of a missile with c: uciform wings, when the wind acts, may be

used to analyze the effect of the random component. The action of the random

component w on the plane-winged missiles, as indicated above, is small.
z

/4o6

0 20 _0 60 #0 I00 lZO

Reduced density K

Figure 12.22. Graph of coefficient for reaction of

missile to wind which is normal with respect to tra-

jectory of missile.

In concluding this section we present an approximate equation for deter-

mining the root-mean-square value of the normal load factor in terms of the

399



root-mean-square value of the norm_ i wind component and the parameters of bhe

missilel

C_PeSVe ]/I(k,_)
I _"_ = _ _ 7 _ I (12" 69 )

(subscript n = density),

V7(k,x)where _ is the coefficient of missile reaction to the normal wind;

k_--[_n/Cy is the reduced value of the relative density of the missile; and

.). bA
=7 is the ratio of the average aerodynamic chord of the missile to the

turbulence scale.

The variation in the reaction coefficient to the normal wind as a function

of parameters k and k is given by the graphs in figure 12.22. In deriving equa-

tions (12.69) the following assumptions were made.

(i) the oscillations of the missile with respect to the center of gravity

produced by the wind were not considered;

(2) the wing of the missile was assumed to be rigid and to have an in-

finite span;

(3) in considering the nonstationary nature of the flow around the wing

due to the random components, the compressibility of the air was not taken into
ac count.

In addition, we shovld remember that equation (12.69) is valid for missiles

with a conventional aerodynamic form, i.e., a frame with a sufficiently developed

lift surface. We cannot use expression (12.69) to take into account the presence

of a control system aboard the missile. In spite of these limitations, this

expression in many cases can be used successfully to make an approximate evalua-

tion of the load factors experienced by a missile subjected to the normal com-

ponent of random wind. We give an example which shows how to calculate the

load factors by means of equation (12.69).

Example 12.2. It is required to use equation (12.69) and to determine the

root-mean-square value of the normal load factor experienced by a missile, whose

flight conditions and parameters are given in example 12.1. First let us find

i 2

See footnote on page 366.
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the value of the wind reaction coefficient. The parameters which determine this

coefficient have the following values k'l_dc_=59; _.=b A/L_O.Ol.

From the graphs in figure 12,22 we find the value of the coefficient for

the reaction of the missile to the wind i/l(k._)l_=0.76.

Substituting this value and also the values of all missile parameters

into equation (12.69) we obtain

5-0.736-16.500

qaY=_Y 2-10000.9.81 •0.76 = O.114_y.

Let us compare the value of the normal load factor with its values obtained

by a more accurate method and given by expressions (12.65) and (12.68). This

comparison shows that the load factor determined by means of the approximate

equation (12.69) is greater than the load factor of the missile without a con-

trol system, and is less than the load factor of a missile with an automatic

pilot stabilizing the pitch angle. Since all three values of the load factor

differ little from each other, we may assume that the results of calculations

carried out by means of equation (12.69) are quite satisfactory.
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CHAPTER13. DYNAMICSOFHOMINGMISSILES

Section 13.1 Kinematic Trajectories of HomingGuidance

Homingguidance maybe achieved by several methods. These methods deter-
mine the nature of the missile trajectories. A guidance method provides for
the variation in the angular position of the velocity vector of the missile
as it approaches the target. In addition to determining the form of trajec-
tory, the guidance method determines the angle at which the missile hits
the target, the distribution of the load factor along the trajectory, the
maximumload factor along the trajectory and the time required for the mis-
sile to hit the target. There are manymethods of homing guidance_

The most commonmethods of guidance are as follows:

(I) the pursuit method;

(2) pursuit with lead;

(3) guidance to the instantaneous impact point or the method of
parallel approach.

A great deal of useful information on the possibilities and properties of
various methods maybe obtained by analyzing the kinematic trajectories of
homing missiles. The kinematics of homing guidance assumethat there is :_n

ideal control of the missile's velocity vector.

i. The Pursuit Method. In the ideal realization of this method the ve-

locity vector of missile V always coincides with the line joining the mis-

sile and the target (the line C in figure 13.1). If the velocity
Target = T

of the missile _ is greater than the velocity of the target_ T under the in-

dicated orientation of V, the target will always be reached by the missile.

Using the symbols shown in figure 13.1 we write the kinematic equations

IL. S. Gutkin, Radio Control of Pilotless Objects, "Sovetskoye Radio,"

1959; A. S. Lokk, Guided Missiles, GTTI, 1957; V. M. Tipugin, V. V.

Veytsel', Remote Radio Control, "Sovetskoye Radio," 1962.
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equation for approach velocity
dL
dt -- VTC°S?--V

equation for angular velocity of line CT

d? l
--&-=-T) si_.

(13.1)

(13.2)

l"
/

l

Z

C '-

),

Figure 13.1. Relative position

of missile and target in pursuit

method.

Fig. 13.2. Kinematic trajectory of

missile in relative motion during

pursuit.

If we divide the first equation by the second equation we obtain

• d_. sin
(13.3)

where

The quantity q must always be greater than unity, because only in this

case dL< 0 and the missile always approaches the target. After the variables
dt

are separated equation (13.3) is integrated. As a result we obtain the ex-

pression

L = Lo(_ _I'-'.{._+ _°__°I', (13.4)
\sin_o/ kl-}-_s_)"

Range L becomes equal to zero only when _ = 0. This means that for any

initial conditions _0 and L0 the missile hits the target from its tail. Ex-

pression (13.4) represents the trsiectory of the missile in polar coordinates

fixed with respect to the target. The trajectory constructed by means of

this equation will be observed at the target. In other words, equation (13.4)
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makes it possible to construct the trajectory in relative motion. Figure 13.2 /4i0

shows a family of relative trajectories which are obtained for various initial

conditions L 0 and _0"

To construct the trajectory of the missile for absolute motion (with re-

spect to the Earth) we must find L = L(t) and _ = _(t). This is quite difficult.

However, it is quite simple to co_ _truct the trajectory graphically. To do

this, it is sufficient to plot the position of the target by points TO, TI, T2,

... at equal intervals of time At and to connect these points by straight lines

to the successive positions of the missile CO, CI, C2, ..., which are situated

on these straight lines (fig. 13.3). The uniform curve which passes through

CO, CI, C2, ..., is the trajectory of the missile or the pursuit path. In the

same simple manner the pursuit curve may be constructed for relative motion_

i.e._ in a coordinate system fixed with respect to the target. This construc-

tion is shown in figure 13.4. From point CO in the direction L0 a line seg-

ment or vector C0b I of length VAt is drawn. From point b I we draw the vector

blC I = -VT At, whose length is equal to VT At. The point C_which is the end
]

of the vector blCl, belongs to the pursuit curve in relative motion. In the

same way the remaining points C2, C3,.... , which belong to the pursuit curve,

are obtained. It is clear that graphical construction for a target under-

going maneuvers, when V _ const and when the velocity of the missile is also
T

not constant, is obtained in a similar manner. The graphic construction of /411

To T3 T4 T6% T8

cs

C_

i

Figure 13.3. Example showing construction of

kinematic trajectory of missile in absolute

motion for pursuit method.
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the trajectory also determines the time from the beginning of motion along the
pursuit curve to the time of impact at the target, as well as the boundary at
which the impact occurs.

I
The load factor n = _ V_, which is proportional to the angular velocity

g
= d_/dt and which must be produced by the control system of the missile as

the latter movesalong the pursuit curve, is very significant. The expression
for the angular velocities is obtained from (13.2) and (13.4)

_o= -- 1"T(sin_°)q-l'( '1 + cos_'_q
• _ /_ _)_---_"_,i-?-_o_-?%j"

(13.5)

Let us find the angular velocity at the instant when the missile hits the

target.

When i < q< 2

llm_= - -vT (s_n_o)_-' lira(1+ cos,_)<(sm._)_-¢= O;
._--o Lo (1 + cos%)q _-o

for q = 2

for q > 2

lim_= '_V_T s_n?o llm(I + cos?)_ =
-o 4 (1 + cos?oP _-o

= -- 4.__VT , s:n?'_

Lo (1 + cos %)' '

lhn _ --

9-0

VT(sin_°)_-z lim (1 f cc.s'_)q
' :-_---- (DO,

Lo(l'kc°s_o) q q_-o (sin?) e-2

The load factor or the angular velocity has a maximum along the trajec-

tory.when I < q < 2. To determine the maximum we differentiate the expression

for _ with respect to _, equation (13.5). From equation

_ -o
d9

q
we find that the maximum angular velocity occurs when _ = arc cos _ .

mum value of the angular velocity is equal to

- _i (_36)
]_Jma,=!_ (SingO)'--I (I-_--_)¢'(1 --'-_-) l 2.

Lo _z-kcos_o)q

The maxi-

When q _ 2, the angular velocity does not have a maximum, for q = 2 the

sin ?o
angular velocity increases from 0 to ._VT (I +cos?o)' at the target; for q > 2,

"_ _ _ in the region of the target.
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C_

Vrm &g"

Figure 13.4. Example showing construction of kinematic

trajectory for relative motion (rm).

From the equations for the angular velocity we can see that the load

factor along the trajectory, including its maximum value_ is inversely

proportional to the initial range L0. Therefore_ it is desirable to initiate
homing as far away from the target as possible.

For ! < q < 2, we may use equations (13.6) to construct the region of

possible attack or to assume a maximum permissible load factor nmax, which

can be experienced by the missile. In polar coordinates fixed with respect

to the target_ the boundary of the region of possible attacks is constructed

from equation
• .q

L=v v + ' i-
nmax g (l -_- cos yo) q "

When the missile is fired towards the target from the region of possible

attacks_ the load factor will not be greater than the assigned value n
m_i •

When we construct the boundary for the region of possible attacks, q00 assumes

q the
values from w to O. It follows from (13.7) that when _0=arc cos _ ,

boundary of the region is transformed into the pursuit curve with an initial
I

= __V_ I-- and an initial angle arc cos . This regio:_ of
radius LOI n,_: g

the boundary may be constructed graphically using the method discussed before.

Figure 13.5 shows the regions of possible attacks for q = 1.2 and 1.8 and

vTv
- 25. in the same way, by using the maximum available load factor and

nmax g

the permissible miss, we can construct the region of possible attacks when

q > 2_ although in this case the load factor of the missile approaches infinity

when the target is hit.
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-_I.2

_ f =1._ "

Figure 13.5. Regions of possible

attacks.

L V

Figure 13.6. Relative position of

missile and target during pursuit

with a lead angle.

2. Pursuit with Lead. During pursuit with lead, a definite angle _ (fis.

13.6) is maintained between the line CT and the missiles velocity vector, in

the general case, the lead angle may be a function of many variables: _ =

(L, _, w, _, t). The simplest case occurs when _ = const. For pursuit with

lead the kinematic equations will have the form

dL
-- = hos - v cos 9,
•dt

L_'_= VT stn o .a_ V sin _
d/ ' '

(13.8)

or

dL cos ? -- q cos ._

L • -- sin ? -} qs!n 9 d?. (13.9)

Integrating expression [13.9) for _ = const, we obtain the trajecto_j

equation for relativemotion I with a constant lead angle

q COS '_
--I

( Sinec--qSi[1.b ) 1/l-''si'i''4'L = L o si n % -- q sin ._ X

q cos ¢

X ( 'lT"qsind_siu'¢°+ccs_°]/ l--q'sin', ) Yl--q'sh,'@.
1 -- q sin _ sin ¢?-it- cos _?_/" 1-- q_ sin _

(13.1o)

IA. S. Lokk, Guided Missiles, Gostekhizdat, 1957.
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in expression (13.10) q2 sin 2 9 <i. For q2 sin 2 9 = I

(13.11)

sin p-

Tdher e q2 sin 2 _ _ I the missile collides with the target. Where q2 sin 2

> I the trajectory becomes a spiral with an infinite number of loops near the

target The Condition q2 sin 2 _ < I is satisfied both for _ < -_ and for _ > _
• 2 _"

it follows from the first equation of (13.8) that the ap-
However, when _ > _ ,

proach velocity T.will be positive, and homing guidance becomes impossible.

Thus we are left with the case _ < 3"

q cos @

In expression (13.10) the exponent { l--¢sin_@ I > 0 when _ < _, while

the product q2 sin 2 _ < I, therefore L becomes equal to 0 when sin _ = q sin _.

This means that the target is hit at some angle _k = arc sin (q sin 4). In

this case the missile can approach the target from two possible directions.

The first direction is given by angle _k < -- while the second direction is2'

given by angle _-q0k >-_ (fig. 13.7 ) The condition sin _k = q sin @ is satisfied2

for both directions. To determine the actual direction from which the missile

will approach the target, it is necessary to investigate both of the directions

for stability. In relative motion the plane L, 9 represents a phase plane,

where the point T (target) is a singularity of (13.8) . In this case the equa-

tions have two singular points Ti(O , _k) and T 2 (0, _ - _k ) which are the foci

of the phase plane _, L.

It is necessary to determine <_hich of the foci is stable and which is um-

stable. The investigation of stability is carried out by the usual method.

We shall assume that the motion of the missile along directions I, 2; 3 and _I
(fig. 13.7) will be unperturbed_ and we shall find equations in terms of _:mall

deviations with respect to the assumed unperturbed directions. For unperturbed

motion 90 = _k"

The initial equations (13.8) for unperturbed motion will be

L=VT(COS , --
(subscripts 05 = approach)]

(13.12)
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L? =_ VT ( - sin ,_k + q sin _) = O.
(13.13)

where Vc6 =-V T (cos _k - q cos *) : const.

\ /

-
Figure 13.7. Stable and unstable direction for

approach of missile to target.

If we assume that _ = _ _ the condition sin _k = q sin _ is satisfied_
0 k

and _ = 0 and _0 = q0k during the entire approach time. In this case L=-V 6 =

const and consequently L = L - V t.
0 c6

We introduce the parameters of the unperturbed state _e = _k' L = L -e 0

Vcdt' T' = -%0 " Next we let L = L + AL and _ = _ + Aq0 in equationse e 'e

(13.8)

L,-t- ;_L=V T [cos(?, + a_)- qcos 'H;
(13.14)

(L, Jr- AL) Ai ---- VT [-- sin (?e -{- A.J + q sin _]..
(13.15)

Assuming that the deviations A_, A_ and AL are small and taking into ac-

count the equations for the unperturbed state, we obtain from (13.14) and

(13.15) the equations for small deviations

AL= _ (V_?sin,_,)'b; (13.16)

L,A'_ = -- VT cos _,A?. (i3.17)

The question of stability of the unperturbed state is solved only on the

basis of equation (13.17), because equation (13.16) makes it possible only to
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dete_:::ine the correction AL(t), after A_(t) is determined from equation (13.17).
To eliminate time in the investigation of stability, we consider (13.17) to-
gether with the expression

= - (13.18)e Vc6"

Dividing (13.18) by (13.17), we obtain
°

= kvdLe, (13.19)
• A_, Lt

where

• . Vc6

The solution of equation (13.19) leads to the expression

• I . kkv (13.21)

where A_O and LeO _ L 0 are the values of the variables at the initial instant

of time.

As we can see from expression (13.21), when k V > 0 the deviation from

the unperturbed state A_ decreases continuously and when t = Lo/Vc6 it be-

comes equal to O. Consequently, when k V < O, the unperturbed state is

suable. On the other hand, when kv > O, the unperturbed state is unstable.

However, k V> 0 for _ = _k < and k V< 0 for _e = _ - _k >2' consequentlye

the stable directions are 1 and 2 in the tail sector of the target. All of

the trajectories of the missile for any initial conditions will be drawn to-

gether to the directions i and 2 in the tail sector of the target (fig. 13.8).

When q sin @ = sin _k = i and when the trajectory is determined by the

expression (13.11), the boundary directions _k = _ -- are neutrally stable,2

because in these cases k = 0 and A_ is always equal to its initial value
V

A_ o •

If we wish to determine the load factors during homing guidance with a

constant lead angle, we must determine the angular velocity _ from the sec-

ond equation (13.8).and from the expression for L (13.10). Since the lead

angle is constant, _ is also the angular rate of change of the velocity vecto_

For this reason the load factor is n = V _/g, as on the pursuit curve.
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2

Figure 13.8. Kinematic trajectory of missile in relative

motion for pursuit with lead angle.

Thus, from (13.8) and (13.10), we find

(13.22)

where v = qcos@
1/1 -- 02sin 2,_

For target impact, when sin _ = q sin _, the angular velocity is equal to

0 when _ < 2 and is equal to infinity when _ > 2. Thus_ the load factor has a

maximum along the trajectory when I < _ < 2. The angle _, for which the load

factor is a maximum, is the root of the transcendental equation

COS 2_ -- (,,-2)(1-qsin+!Cos_ + qSm#o,,sin(p--_-------0."
2}/ l--q2sin _ 2 2

(13.23)

_hen the lead angle is constant, the load factors required to realize _he

trajectory_ as a rule, decrease. During attacks in the front hemisphere, the

homing guidance time is decreased substantially and the target is hit along

an earlier boundary. In addition, the constant lead angle makes it possible

to attack the target along the assigned course sin _k _ which is quite important

in many cases.

The lead angle _ = _ (L, L_ _ _, t), which changes in the process of

homing guidance: opens up wide possibilities for constructing trajectories

which are optimum in various respects. For example, we may consider a tra-

jectory which provides for minimum homing guidance time and also a trajec-

tory where the load factor has a more uniform distribution. In this case

the load factor required for homing will be a minimum for the given initial

conditions, _0 and L . The formulation of the problem concerning optimum0

trajectories achieved with a variable lead angle is quite complicated and

is not considered in the present book. To illustrate the effect of variable
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lead angle_ let us consider the case of a small lead angle when sin _ _ _ and
cos _ = i (_ _ 20-25° ) and when this lead angle is proportional to the angular
velocity of the line MT, i.e., let us assumethat

: - k_. (13.24)

The minus sign(13.24) makesit possible to obtain a lead angle _, because
it follows from the second equation (13.8) that @< 0 when_ _ O. If we as-
sumethat the lead angle is small, the kinematic equations (13.1) and (13.2)
take the form

L = (cos -- q);

(L+kV)6,=- VTStn 9. (13.26)

If we introduce the new variable (L + kV) = x, and if L = x_ we obtain

the kinematic equations of the pursuit curve in terms of the x_ q0 coordinates.

x -: VT (cos _, -- q); (13.27)

x<?: -- VTSln 9 . (13.28)

Equations (13.27) and (13.28) have a solution of the form (13.4)

(13.29)

sm_'oj ' +cos?j"

For the variable L, expression (13.29) takes the form

iL±
(13.30)

By comparing equations (13.4) and (13.30) we see that the introduction of

a small lead angle proportional to @ , is equivalent to increasing the homing

guidance range by a constant quantity kV.

When _ = k_ the method of constructing the trajectory follows from equa-

tions (13.29) and (13.30). We construct the pursuit curve x = f (_) - the

curves P0' PI' P2' . in figures 13.9 and 13.10. The points CO, CI_ C2,. ..,

which are at a distance kV from the points P0' PI' P2' " " are marked on the

rays PO TO_ TI' P2 T2" The points CO, CI, C2, . belong to the unknown

trajectory of homing guidance with a lead angle. We note that the points TI_

/419
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CI' P! are always on one straight line, and consequently the points P0' PI_

P2_ maybe regarded as the successive positions of the missile control

point which movesalong the pursuit curve. The missile is controlled in such
a way that it always remains on the sighting line TIPI. This is known as the

combined control methodand will be considered in detail in the next chapter.

• TO T 1 T 2 T3 T4 T 5 ' ,. .

• P_ P2

Figure 13.9 Kinematic trajectory of missile for

absolute motion when pursuit is carried out with

lead angle.

In the present case there is no control point and the trajectory PO_ Pl_ P2'''"

is a fictitious trajectory, which is required to construct the true trajectory

of the missile in this method of homing guidance. However, it follows from our

discussion that it is technically possible to realize this method not onl_r by

rotating the velocity vector in the lead direction by k_, but also by a f::c-

titious lengthening of the distance to the target by a constant value. This

realization is possible, for example, in guiding a missile to a target using
radar with circular scan (Chapter 14).

We see from the graphs shown in figures 13.9 and 13.10, as well as from

the analysis of equation (13.30), that the homing guidance time and the load

factors along the trajectory are substantially reduced when pursuit takes

place with a lead angle _ = k_. The angle at which the missile encounters

the target is equal to _k + k@k' w_ere _k is the angle given by equation

(13.30) when L = O, and +k is the angular velocity of the line CT determined

from expressions (13.26) and (13.30) when L = 0. To compute the load factor
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we must determine the angular rate of change of the velocity vector, which in
this case is equal to (fig. 13.6)

In this case

@_=__yT@in_0)_-' (I+_s_)q
x_ (1 7- cos _o)e (sin ?)q-_ "

(: 3.3___)

To compute _ we differentiate (13.28) and use equation (13.27) to find

from which it follows that

X

()= L!]-- k--VT(2c°s'?x--q)]_o. (13.32)

Equation (13.32) shows that by using this method the load factor experienced

by the missile (proportional to 0), is smaller than in the case when the mis-

sile moves along the pursuit curv_ without a lead angle. In the latter case,

the load factor is proportional to _.

TO T_ T2 %m4 %%%%

c,] P2

r

Co Pi

" 'PO

- _

r

?3

Figure 13.10. Kinematic trajectory of missile in

absolute motion during pursuit with load angle.
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3. The Method of Parallel Approach. Whenwe analyzed the guidance of a

missile to the target which moves v_ith a velocity V = const, using the method
T

of pursuit with a constant lead angle 4, we established that for the initial

angle _O=CPk _ where sin _k=q sin _ the approach to the target takes place along

a straight line. A straight trajectory is rather attractive, because in this

case the process of homing guidance takes place without lateral accelerations.

Unfortunately_ when _ = const_ trajectories of this type are possible only for

two initial angles _0 = _ _k' and the probability of realizing this motion is

therefore, equal to O. In order to have the trajectory a straight line for

any initial conditions, the lead angle must be a function of the initial angle

_0 and a function of the ratio of the missile velocity to the target velocity.

In other words, the lead angle must satisfy the condition.

I (13.33)
sin _=--sin %=_T Sin_o

q. V

or

sin% = sin______o= sin___@T (13.34)
vT v v

where _T = _ - _0"

Condition "(13.33) or (13.34) means that _ = O, i.e., the line CT will

be displaced parallel to itself. Since the quantities @, _0' VT and V are

constant_ the approach velocity is also constant

L ----- V_6= VT (cos_o"q cos@..

The homing guidance time is equal to
m

t¢_ L°
V¢6

Condition (13.34) shows that the vectors _ and L form a triangle
c

(fig. !3.11a). The vector's Vc6 ,_ and _T (figs. 13.11b and c) also form tri-

angles_ because L T = t V and L = t V. The method of parallel approach bothc T c c

from the front and from the rear hemisphere is realized when q = V/V T > i, and

also when q = V/V T < i (figs.13.ilb and c). The vectors _T and _c meet at the

apex of the triangle T_ where the missile hits the target.
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/

C

/'_o L_ vT ,;

7 v

a b

Figure 13.11. Construction of kinematic trajectories

for method of parallel approach.

The point T is the impact point of the missile at the target. This point

VTis unique for given initial conditions if = const and V = const. If the
c

latter conditions are not satisfied_ while the conditions for parallel approach

(13.34) are satisfied for instantaneous values V, V T _ and 4, we have a multi-

plicity of impact points T forming the trajectory of the impact points. For

each instant of time there is a definite impact point. This instantaneous

impact point is the apex of the triangle formed by the instantaneous values of

vectors L, LT and L.

/..to q, Z_o

• "__

Figure 13.12. Kinematic trajectory of missile guided

by method of parallel approach when target undergoes

maneuvers ; A = T,

Figure 13.12 shows the trajectory of a target which has started its maneu-

vers at point T1. At point T 5 the target again begins to move in a straight

line. The instantaneous positions of the target and of the missile at the
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same instant of time are connected by parallel straight lines CoTo, CITI, C2 2T.

Figure 13.12 shows.two "instantaneous" triangles CoToP and CITIP I and the tra-0

jectory formed by the instantaneous impact points PO' P ' P2' P and P4"i 3

if the velocity vectors of the target and of the missile are constant,

the load_factor of the missile is equal to 0 after parallel approach is
±

realized . If these conditions are violated the missile trajectory will not

be a straight line_ and the missile will be subjected to lateral load factors.

Let us determine the load factor of the missile when the target moves

along a curviiinear path when VT = const and V = const. Figure 13.13 shows

the triangle of parallel approach and the angles 8 and 8T determining the flight
direction of the missile and of the _arget with respect to the reference direc-

tions 0 - O.

/423

f

O- 0

Figure 13,13. Triangle of parallel approach.

For this case the condition of parallel approach will have the form

VT sin (% -- _) ---- V sin (% -- 0). (13.35)

Because the _ = O, _ = _0 = const. The angular position of the target

vector eT = 8T (t) is a given function of time. From equation (13.35) we de-

termine the value e under which parallel approach takes place

sin (_o --o@

0 = _o -- arc sin
q

iThe load factor is neeessary to place the missile in the state of parallel

approach--to establish the required angle 4, However, this problem is not

related to the kinematics.

(13.36)
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Differentiating (13.36) with respect to time and introducing the load
VTeT

factors n = V__ and n =-- instead of the angular velocities e and @T '
c g T g

we obtain

n c ,== TI 1-- sill_ (% --0___II_

K I shl"- (_o -- 0T)
q=

(13.37)

V
where q =-

VT

When q > i, the load factor of the missile is always less than the load

factor of the target• When q = i, the load factor of the missile is equal to

the load factor of the target. Finally, when q < I_ the load factor of the mis-

sile is greater than the load factor of the target. In addition, when q < i,

the maneuvers of the target may produce a condition whereby sin (_0 - eT)/q

becomes greater than unity. In this case expression (13.37) loses its meaning,

n O

nT

/.0_

o.9 _z

o.8 9,'

o.;

o._

o,J

o;

o.1
! '! ! i i i i = 1 |

-o o,I _z o.,7 _ o.5 _6 o.z _8 o.gs_,(_,o-eT)

Figure 13.14. Graphs of function.

because condition (13.35) is no longer satisfied. The state of parallel ap-

proach will be disrupted and the target will not be hit.

Figure 13.14 shows the graphs of the function nc/nT, when q > i, con-

structed in accordance with equation (13.37). It follows from these graphs

that the maximum load factor during maneuvers of the target occurs when

_0 - eT is close to 0 or _. From this we obtain a rule for the evasive

maneuvers of the target: the target must turn with the maximum possible
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_0
acceleration, such that 990- 8T _ _ . Consequently, when attack takes place

from the rear hemisphere, the target must turn away from the missile_ and when
the attack takes place from the front hemisphere, the target must turn towards
the missile• The samemaneuversof the target when q < i may cause a disruption
in the homing guidance of the missile.

In concluding this section we note several special features of the kine-

matics of homing guidance. The kinematic examination of the problem assumes

an instantaneous orientation of the velocity vector_ due to this particular

method of guidance. However_ in the actual control of a missile we can only

vary the lateral force which causes the velocity vector of the missile to

rotate. Therefore, the data obtained from the kinematic analysis with respect

to load factors in the region of the target, and particularly with respect to

the impact accuracy, becomes inaccurate. As we shall show, the question of

hit accuracy is solved by investigating the dynamics of homing guidance. The

kinematic analysis gives us general information on the nature of the trajec-

tory, makes it possible for us to compute the homing guidance time and gives

us a sufficiently accurate concept about the required load factors along the

trajectory, except in the region close to the target. In general, the further

the missile is from the targe% the more accurate is the information on the

required load factors obtained from the kinematic analysis. In the kinematic

analysis the placement of the missile on the parallel approach from a random

initial position of the velocity vectors of the target in the missile is ob-

tained instantaneousiy_ because the direction of the missile flight velocity

varies instantaneously.

Under actual conditions an instantaneous orientation of the velocity
vector is impossible 3 and the placement of the missile in the state of

parallel approach presents a rather complex problem. However, this is a

problem of dynamics, because there is no other way of entering the parallel

approach except by applying a force to the missile and producing an angular
velocity _.

Since _ must be equal to 0 in the state of parallel approach, we can enter
this state by varying e (or the lateral force) according to the law

: k % (!3.38)

where k is the coefficient of proportionality. The higher the value of k,

the more rapidly will the state of parallel approach be established.

i
In some sources the control of the missile in accordance with the law

= k9 is considered as a special guidance method and is called the method of

proportional navigation.

!A. S. Lokk, Guided Missiles, Gostekhizdat, 1957.
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Section 13.2. The Equation of Motion for Missiles with

_oming Guidance

I. Equations for the Two-Dimensional Motion of the Missile. Equations of

motion of missiles with homing guidance consist of three groups: the equations

of motion of missile, the equations of kinematics relations between the mis-

sile and the target and the equations of the control systems.

The equations of the missile (8 53) moving with a variable velocity I. : are

written in the following form

Tv gO -]- Tvg--_ cos 0 -----O;
dl V

d2_ nu C_ dO d_
at---; 7; + c; -_ + c._. = c_6;

o =0-{- =,

(13.39)

where Tv : mV
, pV2

cvs -2-+ P

and the coefficients C_, C_, C and C6 are determined by means of equations(8.27).

In accordance with figure 13.13 the kinematic coupling equations are ob-

tained in the following form

dL
,_'--;-= V_COS (? -- %,) -- Vcos (?- 0);

L e--L= -- (,,,-- + Vsin(,p--0);
dt

(13.40)

(13.41)

If we assume that the control system of the missile is linear, we can

write its equation in the general form

' P, Co)6 =F(¢,_, _,. _;, L,...), . (13.42)

where P6(p) is a polynomial p = d/dr, which characterizes the delay in the con-

trol system associated with the formulation of the control.laws; F (@, _; _

_,. . L) is a linear function of the arguments @, 5, @, _, ... and may be a

nonlinear function of the range L.

IVelocity V = V(t) may be determined from equations (8.92) and from the kine-

matic trajectory of homing guidance.
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The arguments _, _, _, _, . .. , maybe established under action of poly-
nomial Q(p), whose degrees aKe equai to or less than the degree of P6(P). The
numberof arguments F(_, _, _, %. .,L) is determined by the collection of
available technica_ meansfor measuring and forming the signals _, 5, _, _, • .
The form of the function F(_, _, $, _, . . .,L), obtained for a given selection
of signals _, _, . ., determines the particular method of guidance.

Equations (13.39) - (13.42) do not lend themselves to investigation for
the purpose of selecting a reliable form of equation (13.42) and, consequently,
for selecting a guidance method which takes into account the existing technical
means. Therefore, to analyze the dynamics of homing guidance we shall consider
the motion of the missile with respect to someunperturbed rectilinear motion

of the missile and target with constant v__lues V = Ve and V = VTe and carry

out the corresponding linearization of equations (13.39) - (13.41). However,

before proceeding with the linearization of these expressions, we shall con-

sider the concept of missile miss.

2. The Miss of a Missile. This concept is associated with firing unguided

missiles at the target (mobile or fixed). _The miss is the minimum distance L
min

between the trajectories of the target and of the missile. Figure 13.15 shows

the instantaneous position of target T and of missile M for some instant of time.

If, beginning with this instant of time_ the velocity vectors of the missile and

of the target remain constant, we shall experience a certain miss Lmin, shown

by symbol X in figure 13.15. To determine the miss it is convenient to con-

sider relative motion. For this purpose we draw a vector -V T from the end of

the missile vector _. The sum of vectors _ and -_T forms a vector for the

relative velocity of the missile uV_TH' i.e.,

V°T"--V-- VT" (13.43)

(subscript OTH = relative).

The missile will move in the direction VOT H and at point _i the distance

between the target and the missile will be a minimum, i.e., equal to the miss

X. If the vectors VT and V are constant, the miss is also constant. If _T _

const and V _ const, the miss vector is a continuously variable quantity. We

note that in parallel approach the miss is obviously equal to O.

Let us express the miss in terms of the basic kinematic parameters L and

_. The miss X in figure 13.15 is represented by segment _i T, equal to segment

_4_5 • Let us designate by t the time of motion of the missile to the rangec

L = X- Then
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O, O#

i£ vv,

Figure 13.15. Instantaneous position of target
and of missile.

tcVo,. = Ca t = L cos p. (13.44)

Furthermore,

Consequently,

element _3_4 is equal to

asa, = 4 [l_sin?--Vsin¢] = --.t,L _ .

the miss X will be equal to

_=--t,L_ i

Eliminating the time t
c

from equations

_OTH _

(13.44) and (13.45), we find

(13.45)

(13._6)

where

Vo,, = V cos (q + _) V_cos (_ + _). (-3. I_7)

Angle b may be considered as the angular miss or the angular sighting

error. The sighting error is always small, i.e., under normal conditions

angle b cannot be very large. For this reason we may assume

Vo,. _ V,6= V cos_- VTCOS?.
(i3.k8)
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3. Linearization of Equations of Motion for Missiles with HomingGuid-
ance. As we have a/ready mentioned_ we consider unperturbed motion to be the
one for which the velocity vectors of the missiles and of the target remain
constant during the entire approach process. This form of unperturbed mo!i©n

is realized for all quidance methods considered in section i._ i.e._ when

guidance is carried out with a constant lead angle and with parallel approach.

Any deviations of the velocity vector of the target from some constant value

_Teand of the values of the missile velocity from V will appear as some addl-e

tional perturbing forces_ which act on the homing guidance system of the mis-

sile. In the pursuit method the lead angle is equal to 0 and unperturbed

motion will take place when the missile flies with angles _e = I0'

Let us assume that L = L + 5L; _ = _e + A_; e = 0 + Ae; e = e + A0 Te e T Te

VT = '±V_e+ AVT; V = V.e + AV. Here the quantities with the subscript e represent

the parameters of the unperturbed state (in this case eTe = 0). For the un-

perturbed state the following relations are valid.

dLe

d7 = vTe

0 = -- VTe
cos % -- V, cos .(% -- O,)=. -- V_6 = const;/.
sin % + V¢ stn (?, - 0_).

(13.49)

Substituting the variables L = L + AL, _ = _ + A_ in equations (13.40)
e e

and (13.41), taking into account the equation of the unperturbed state (13.49)

and dropping terms which are infinitesimals of the second order_ we obtain

linear equations for small deviations from the unperturbed state

dAL

d--?"= -- Ve sin (_¢ -- ODAO' +/a (0;

4 da Z _ _ = _ kzAO + [_ (t);
V_.6 dl

(]-3.50)

(i3.51)

where L,--_ L o -- Vj; kv = Ve CosOPt -- O,).
Vc6

It- (t) = cos #,5V T - cos (?, -- 0,) aV + VTe sin .%A0 T '

1
/, (t)----_ [VTe cos r,AOT -- sin. ?,AV T .+ stn (% -- 0,)aV].

(13.52)

(13.53)

Equation (13.50) will not be required in the future.

fine L = L (t) after A0 is obtained, because L = L + AL.
e

It can be used to re-

However, this re-

finement of the law for range variation has no special meaning.
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Equation (13.51) may be written with respect to the miss X. Comparing
the derivatives of the expression for the miss (13.46) and expression (13.51)
we obtain

d____x_- L,kr daO "L,'[_(t). (13.54)
dt dl

Equations(13.51) and (13.54) are equations with a variable coefficient

Le =Lo- root"

The missile equations (13.39) are also equations with variable coefficients

T ,_ mw, m., m and m . However, the laws for the variation in the coefficientsv _ _ 6

of the missile equation and in the coefficient L of the kinematic equation
e

(13.51) or (13.54) differ in principle. The coefficient L becomes equal to
e

0 when t = Lo/Vc6 _ while the coefficients of the missile equations do not be-

come equal to 0 (with perhaps the exception of mG) , and their variation is not

associated in any way with the fact that the missile approaches the target.

The variation in the coefficient L during the process of homing guidance is
e

significant. For this reason we shall assume that the coefficients of equa-

tion (13.99) are constant, but different for various flight conditions of the
missile.

If we assume that the deviations in the flight direction of the missile

from the unperturbed direction are small, the last term in the first equal:ion

(13.39) may be assumed to be constant or to be a very slowly varying quantity,

so that its derivative can be neglected. Furthermore, in expression (13.39)

we should take the deviations A& and AO in place of & and O. Thus, instead

of equation (13.39) we obtain the following group of equations
]430

db0 Tvg

Tv-aT -- :; := ----V_-, cos Oc;

' d2A_ +C6 d_ . . dA_
at--i- + c. --;/- +. =

(13.55)

where

Now we can obtain expression for the miss

dz k_ ' :

t, (t) (0 : gLekvCoso,.
.. V£

(13.56)

(13.57)
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Wecan introduce the load factor developed by the missile in expression (i3.56)
in place of the angle of attack a.

Section 13.3. The Dynamics of Missile HomingGuidance During
Parallel Approach

i. The Equations of the Dynamicsof HomingGuidance for Various Control
Laws. At the initial instant of guidance, when the missile is launched or the
control system is turned on, there is always someinitial miss X0. The control

system of the missile is designed to decrease the initial miss X to 0 or to
0

someminimumvalue, so that when the warhead of the missile explodes it will
destroy the target. The purpose of investigating the dynamics of homing
guidance is to study the laws for the variation in miss and the selection of
missile control system which would reduce the miss to 0 or to somenecessary
minimumvalue.

Expression (13.56) clearly showsthe type of law which must be used to
vary the angle of attack of the missile or its laod factor to provide for an
asymptotic decrease in the initial miss. Indeed if we require that

kx (13.58)

we obtain the equation for miss in the form
d-t."

__ _L kz --Ix(0. (13.59)
dt

The solution of equation (13.59) when f (t) = 0 has the well-known
Xform

x _ xoe-kt ,

.where k=  x/T v. Weshould select k in such a way that 3/k [sec] is less
X

than the guidance time. If fx(t) = f = const, the solution of equation
X

(13.59) will take the form

& (l--e=k'). ' (13.60).=_o e-kt +-_

As we can see, the constant perturbing force f produces a miss fx/k.
X

The constant component f is determined by the gravity force [see equation
X

(13.57)]. However, since the missile flight direction 0 is known approxi-
e

mately, we can always introduce a constant signal into the control law which
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compensatesthe effect of missile weight. The perturbation f is also produced
X

by the maneuvers of the target. Indeed, the term Lef_(t ) in expression

(13.57) has the following value when V = const

/¢osw A_ sinw A_T ).4 CVj-_6VTe v_-
(13.61)

From this we can see that the longitudinal lo_d factor of the target

AP T and the lateral load factor of the target VTeA0 T produce a perturbing force

f ,

X

To increase the accuracy of guidance and lower the miss when the pertur-

bations are constant or vary slowly, it is neccessary to increase the order

of astaticism of the system, i.e., to augment the control law or to allow for

the variation in the angle of attack (13.58) by the integral term

' (13.62)

' . k, q_ I_= i7"_--i7. _dt.
0

In this case the equation with respect to the miss would be of the second
order

,tt---? -Z- (13.63)

where

2[..0. 0 -- k_kv ".
T,, and °2o q_kv

If f (t) = const, the right side of the equation is equal to 0 and the
X

effect of f does not produce a miss. In the same way, during the slow vari-
X

ation of fx(t) the miss will be small because fx(t) = dfx/dt is small. The co-

efficient use of q is selected in such a way that 3/_O- _ t , where t is the
X e c

homing guidance time. The coefficient kx determines the relative damping co-

efficient _ which must be taken equal to_2 (we note that for this value of

the damping coefficient we obtain an optimum transient process with a control

time t _ 3) .

P n0

The equations for homing guidance (13.59) and (13.63) have constant co-

efficients due to the special control laws (13.58) and (13.62) which contain
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the instantaneous value of the range to the •target.

miss in equation (13.58) we obtain

Expanding the value of the

• °

a= Jr k. vL--_e6v. (13.64)

As we can see from expression (13.64), to form the control law we must

i0 eimeasure the range L to the target, the approach velocity VG6 = __ , the

angular velocity of the line joining the missile to the target @ and use a com-

puter for generating signals in accordance with equation (13.64).

It is rather difficult to realize a range measuring channel aboard the

missile. Also, as a rule, radars for measuring range are not too well pro-

tected against interference. Therefore it is undesirable to use signals L
e

and VcG. Certain difficulties are encountered in carrying out the multiplica-

tion and division operations due to the requirements of the control law (13.64).

usedlFOr this reason in the parallel approach method the following laws are

(13.65)

and

= k__ - q_ .I _t.
o

(13.66)

For control law(13.65) we have an equation for the miss having the form

d_+ k_k___=f., (13.67)
at 4-t

where l-_ lo- l_--- L,
V¢6
_--! - the range to the target in seconds;

kv Lo ..'
(13.68)

For integral control (13.66) the equation for the miss has the form

1 "dx k .t .

y "s. "i."i gi-$ _ + q. _ dt = --i- l" (t). ,
0 .. "

(13.69)

1The minus sign in equation (13.46) must be dropped when the control laws are

written in this manner.
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where
k_.k_.; kv

After differentiation we obtain

dr' +(k+ I)/d-_ +(lq+ 2k) x ----F/, (t)-F I[,(t).
(m3.7o)

Expressions (13.67) and (13.70) contain a variable coefficient i = i -t;
0

they are s therefore, nonstationary linear equations. These equations have one

special feature--their solution has a singularity when t = 1 . The singularity
0

corresponds to the instant of time when the missile hits the target. Before

continuing the analysis of missile guidance dynamics for parallel approach_ we

consider briefly the properties of linear nonstationary equationswith singu-
larities•

2. Nonstationary Linear Equations of the Second Order with Singularities•

The following equation represents a sufficiently general form of linear equa-

tions of second order with singularities

where

and

_'x dx" (13 71)
t,--_- + p (Ot _ + QCOx= o,

• ,o(t) = o. + alt + a#, +. •.

Q(0= bo+ b,t + b¢' iF..

are series or polynomials of t.

The solution of equation (13.71) is sought in the form of a series

" (13.72)
x = tP_ k,t s .

$=0

Substituting expression (13.72) into equation (13.71) and setting to 0

the coefficients in front of the same degrees of t, we obtain a series of equa-

tions which can be used to determine p and k (s = 0, l, 2 . . .):
s

[p 60 -- 1) + ao,o+ b,,] 4 = o, '_

[(p+ l)p-kao(p+ l)+ bo]kt q-alVko+ biko=O , [

[(p+ 2)Co+ 1)+ ao(p+ 2) + 4] k, +a_ (p+ ]) k,+ _'
+ a2Pko+ blkz + b2ko='0, !

(13.73)
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In the first equation (13.73) k0 _ 0 and may be taken as an arbitrary

value (in particular equal to 1). Consequently, the exponent p is determined

from the first equation

p(p--I)+ aop+ bo= O. (13.74)

Equation (13.74) used to determine the exponent p is called the character-

istic equation. This equation is quadratic and has two routes Pl and P2" If

the difference between the roots Pl - P2 is not equal to a whole positive number

or to O, solution of (13.71) will have the following form

w m

x = _tv. _s kst"+ _,tv._ hat'.
s-O s-O

(13.75)

where cI and c are arbitrary constants determined by the initial conditions;2

ks are coefficients determined successively from equations (13.73) where 0 = Pl;

and h are coefficients determined from the same system of equations when p =
S

P2"

If the difference in the values of the roots of the characteristic equa-

tion is equal to a whole positive number or to O, the terms of (13.75) lose

their linear independence and the solution of (13.71) has the form

x = _,tv, k_ t s --[- c_ t P' k,P lg x .-.[- t P' h,x s .

,,o ,-o- / .-o ]

(13.76)

tion
Quite frequently an equation of the form (13.71) is called a Bessel equa-

d_x dx "

tza"Z_-+ t--_" +<t'--v,) =0,
• • (13.77)

where _ is a constant number (parameter).

The series in solutions (13.75) and (13.76) for equation (13.77) are

called Bessel or cylindrical functions. If v is not whole or is not half of

a whole odd number, the solution of (13.77) has the form

•x = c,I,(t)+ c,L,(t), (13.78)

where I (t) is a Bessel function of the first type of order _.
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If v is a whole number n or O, the terms in (13.78) lose their linear in-

dependence and the solution of (13.77) will be

x = c_4 (t) + c2Kn(t), (13.79)

where K (t) is a Bessel function of the second type of order n.
m

1
Bessel functions are well known and tabulated. For this reason the

analysis of processes described by equation (13.77) is not difficult. When the

parameter _ is equal to 1/2 of a whole odd number, the Bessel functions are

expressed in terms of elementary functions.

Let us note one other important case of equation (13.71)

or

d2x dx
12_ + (b -- otx = 0dt, -qt-2i-

dax " dx ,

. T.f,=o.
(13.8o)

Expression (13.80)is a degenerate hypergeometric equation satisfied by

the degenerate hypergeometric functions

a

p_(a. b, O= l +T t+ --a(l +a) t' + a(l +a)(2+a)
bO.+b) bO +b)(2+b)

If b is not a whole number, the solution of (13.80) has the form

x =ctFl (a , b, O.3c cztt'-b F: (a-b-.l- 1, 2--b, O. (13.81)

Hypergeometric functions are not tabulated or investigated as thoroughly

as the Bessel functions. The graphs of the functions for various values of

a and b may be found in the book of E. Janke and F. Emde. 1

When parameter b is equal to a whole number, the terms in equation (13.81)

lose their linear independence. To obtain a solution in this case we use a

hypergeometric function of the second type F2(a , b, t), which is constructed

according to the second term in expression (13.76). Figure 13.16 shows graphs

of functions FI( a, b, t) and F2(a , b, t) for b = 2 and a = -4, a = -9. We

IE. Janke and F. Emde, Tables of Functions with Equations and Curves, Fizmatgiz,

1959.
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note that if a = -n, where n is a natural number, Fl(a , b, t) and F (a, b, t)2

are transformed into polynomials and Fl(a , b, t) is equal to the generalized

Chebyshev-Lagerpolynomial.

As we can see from these graphs, when the arguments have large values,
both functions have a monotonic nature and when the values of the arguments
are small, these functions have an oscillatory nature. The function F2(a, b, t)

approaches infinity when t_O. Oneof the solutions (13.75), (13.78) or (13.81)
approaches infinity when t = O. This can be determined by considering the
roots of the characteristic equation. If the root p < O, then obviously the

2

second term in (13.75) approaches infinity when t = 0.

or

For the Bessel equation the characteristic equation has the form

p(_--l)_ p--v'=O

• " ps .:_vs .-- O,

from which it follows that

p; = v and p== -- v.

Thus, the second solution of the Bessel equation and consequently the

Bessel functions of the second type always have an infinite value when t = 0.

8
6

2
0

-2
-#

r
I±" " .

ql_ " .

• _ tars;) - _1o".
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Figure 13.16. Graphs of functions F I (T) and F 2 (_).



form

For the hypergeometric equation the defining equation is written in the

p (p- l)+ bp= o,

Consequently Pl = 0 and P2 = 1 - b, and the second solution of the hy-

pergeometric equation approaches infinity for all b > l, which can also be

seen from equation (13.81).

3. The Analysis and Domparison of Parallel Approach Laws. Parallel ap-

proach with control laws (13.58) and (13.62) leading to stationary equations

was investigated in the first subsection Of this section.

Now let us consider equation (13.67). This equation, as well as expressions

(13.59), (13.63) and (13.69), is an equation of a closed loop automatic control

system for the miss X. In this case the error of the system is the negative

value of the miss X. The functional diagrams corresponding to equations (13.67)

and (13.69) are shown in figures 13.17a and b.

a b

Figure 13.17. Functional diagrams corresponding to

equations (13.67) and (13.69).

We should note that the transformation and convolution laws for the func-

tional diagrams of linear stationary systems are not applicable to functional

diagrams whose elements have variable parameters. However, it is still pos-

sible to draw certain conclusions about the general properties of nonstationary

systems from %heir functional diagrams. For example, "in the diagram shown in

figure 13.17a there is an amplifying element with coefficient k which

- t

approaches infinity when t = 1 . From this we can conclude that the perturba-
0

tion fx' which is limited in modulus, must not lead to a miss in this case.

The validity of this conclusion is confirmed by the solution of equation (13.67)
when f = const

•" _o k---7 •_ & ; j .. (13.82)
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We can see from this solution that the miss component due to the perturba-

tion becomes equal to 0 when 1 = O. Therefore, it would seem that there is no

necessity for having an integral law (13.66). However, this is not exactly

true. The fact is that guidance must be stopped at a certain distance from

the target Lmin(Or lmin) , because the target coordinator goes blind. For this

reason the miss must be reduced to a minimum at a range Lmi n rather than at

zero range. From this point of view the Tequirement for the integral law still

holds. From the same considerations the qUantity k in expression (13.82) is

significant. The quantity k is determined by selecting the coefficient of pro-

portionality in the control law (13.65). If we set a requirement that the miss

must decrease to 5 percent of its initial value, when 1 = lmi n is reached, we
have

•k = Ig 20
4 (13.83)

lmi.

Since imi n is assigned, we can see from equation (13.83) that when the

initial range is large we shall have the same accuracy when the gain of the

system is less. Since the coefficient k cannot be made too large, it turns

out that homing guidance cannot be started when the initial range is too

small. A large initial range is advantageous from all points of view: the

initial miss has enough time to decrease and the amplification factor may be

large. When the amplification factor is small, the missile becomes unstable

to high frequency interference which, in particular, is determined by the

fluctuations in the signal reflected by the target.

If we compare the control laws satisfying the miss (13.58) and the angular

velocity (13.65), we may conclude that the control law based on the angular

velocity provides for homing guidance from any ranges, and if we neglect

noise interference, it provides a higher hit accuracy; for the control law

based on the miss there is an exponential decrease in the miss and, therefore,

the guidance time must always be greater than the control time. If we take

into account noise interference, the difference between the two laws from the

standpoint of accuracy becomes insignificant. The control law based on the

miss, as we have stated_ is more difficult to realize than the control, law

based on the angular velocity.

Therefore, the basic advantage is in the control law based on the angular

velocity. In section 1 of this Chapter we stated that the control law based

on the angular velocity is called the Law of Proportional Navigation in some
references.

Now let us consider the integral law based on the angular velocity. We

consider equation (13.70) when f = f = 0 and introduce a new independent
x x

variable i = 1 - t.
0
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Equation (13.70) takes the form

l._ d_7. .- d_
--(_+ 1)_+(ql+2k)x=O.

(13.84)

First let us check the value of the miss when 1 = O.

ulate the characteristic equation

p(p -.l)_(k+ O.p+ 2k= ol

To do this we form-

The roots of the characteristic equation Pl = k and P2 = 2 are positive,

so that when 1 = O, the miss is al;o equal to zero according to expression

(13.75). k + 2

By making the'substitutions T = 2V_I and y = X I 2 equation (13.84)3

is 'transformed into the Bessel equation of the order _ = k - 2. Consequently

the solution of equation (13.84) will have the form

k+l

: l'--'_"[C,/k-2 (21,/_ + C21-(k-2)(21/_')]. (13.8,5)

where CI and C2 are arbitrary constants.

For the initial conditions x _0,_ = 0 the constants C and C
t=4 l-to i 2

are given by the following expressions

Ci _ _.o .. 4+2 ('-o)
k+2

_4-_- 4-2 (,o)t_+2('_o)- I_,__('o)t_k+_(_o)

f

C2 _ _o . Ik--2 ('to)
k+2

4--z- 4_2(_o)/_+_(,0)-4 _('0)t-k+ 2(,o)'

(13.86)

(13.87)

where

a /,(9/; ("o)= _ I,-,,:

The following equation is valid for the derivatives of Bessel functions

d_,(,)_/.,-. (9 -- !/, (9. (13.88)
• d"g I;

If k - 2 is a whole number n the functions I_k + 2 (7) in expressions

(13.85), (13.86) and (13.87) should be replaced by a function of the second

type K (_). Equation (13.88)remains valid for functions of the second type.
n
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Bessel functions of any orde_ _ represent oscillations with a variable

period which are almost undamped. As we can see from solution (13.85), the

damping of the oscillations in the instantaneous value of the miss are de-

termined by the quintity k. When k becomes greater, the damping of the

oscillations also becomes greater. The coefficient q (a portion of the in-

tegral control) determines the periods of the oscillatory motion. For the

same values k and q, the nature of the miss oscillations depends to a large

degree on the initial range L0 (or i ). The greater the range, the greater
0

is the oscillatory nature of the miss decrease process. In figure 13.18 curves

computed by means of equation (13.85) are shown for the variation in the miss

when q = 1.0 i/see and when k assumes different values with i = 160 see and
0

i = 30 sec. The behavior of the curves shows that the decrease of the
0

initial miss at long range has a more oscillatory nature. The variation in

the damping as a function of range maybe obtained by analyzing equation

(13.70). The variable coefficient i is frozen for different instants of time.

Let us write the homogeneous equation (13.70) in normalized form, assuming

that I is a parameter

d2_ d_ O_xdt--V+ 2_o-E7+ - = o, (13.89)

where
o q 2k k-t- l. r.-- k+l
.-o=-7--t- l-T- ; 2 Qo= l ' 2,[ql + 2k

As the target is approached, the natural frequency of oscillations in-

creases and the coefficient of relative damping also increases.

Z
AP=5

,n_,'o • •

F

Figure 13.18. Curves showing variations in miss.

4. The Effect of Delay in Establishing the Control Force in the Process

of Parallel Approach. The control laws given by expressions(13.58), (13.62),

(13.65) and (13.66) assume that the angle of attack and the lateral control

force are proportional and follow the variations in the total control signal

without delay. However, actually there is a delay in the control signals when
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o -f,,,
/vft9

Fi_are 13.19. _anctional diagrams corresponding to

control laws (13.58) and (13.65).

they are amplified and transformed by the control system aboard the missile, and,

in addition, for missiles with fixed wings there is a delay between the deflec-

tion of the control surfaces and the angle of attack. The latter delay is most

appreciable. It is known that the relationship between the angle of attack and

the deflection angle of the control surface, for the case of linear approxima-

tion, is characterized by the transfer function of the oscillating element.

Figures 13.19a and b show the functional diagrams corresponding to control laws

(13.58) and (13.65), which take into account the true relationship between the

angle of attack and the deflection angle of the control surface (delay in the

control system is disregarded). The functional diagrams contain the following

designations

"hi ' Vc6kv [_/se_], k_ m+ ..= ,,,.;
• "" + _-v

m. + m,'+-_--
2_T2 =

m w

m, "4- "-_v

i,

m,,

m= "4-Ty

To investigate the effect of deiay within the scope of the well-known linear

equations of the second order, we approximate the oscillating element and func-

tional diagrams in figure 13.19 by an inertial element. This approximation is

possible when the damping coefficient _ > 1.0. In this case both real poles

of the oscillatingelement differ substantially. We neglect the large pole and

obtain an inertial element in place of an oscillating element. The delay in

the control force which has this form is also characteristic for missiles in

which the lateral force is controlled directly. Such missiles include those

which have rotatable wings and those with a lateralreactive thrust.

The equations of homing guidance which take into account the delay in the

control system have the following form for both control laws.
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for controlling the miss

d_

d--7= zk,=+ I, (t),

d_

T2 T +== k26,

1
_ --'--- k,, T X;

(13.9o)

for controlling the angular rate of change of the line joining the mis-

sile and the target

.= lk,= +/', (0,}
T d,,

,-_-+=- .k=8, ]

6 = = k_ %

Vc61=

(13.91)

(see footnote on p 26 ).

Eliminating variables a and 6 from equation

order equation for the miss

(13.90), we obtain a second

T=d--_-+ +1

=(,+ +T,i.<o. (13.90a)

where
k=k,k;,k= 1 • "[=I

Thus, we obtain an equation for the miss fro_ system (13.91)

--_-:+-7- _ =. (13.91a)
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where

k = klhk _-_j-.
• ¢6

First, let us consider the value of the miss for both cases when I = 0.

We investigate the homogeneous equations (13.90a) and (13.91a), introducing a

new independent variable 1

dl' -_- + rd _ O.

2
Let us multiply both equations by I and find the characteristic equations

which are the same for both cases

_(_- l)--p = o.

One of the roots of the characteristic equations is equal to 0, while the other

is equal to 2. Consequently, for both cases when 1 = 0 the miss is also equal

to 0. However_ the conclusion that the missile will hit the target because

X = 0 when 1 = 0 is premature.

where

In addition to the law for the variation of the miss, when the target is

approached 3 it is necessary to study the behavior of the other coordinates of

the system, such as the angle of attack or the deflection angle of the con-

trol surface. Let us consider equation (13.91b) first. By using the substitu-

tion

_(9 -- _ (_),_

equation (13.91b) is reduced to a degenerate hypergeometric equation when

b = 3 and a = -(k - 2); see equation (13.80)

_--_-_d,'+ (3-- _)_. + (k:-- 2) W= O. (13.91c)

Except for the constant factor, the vklue of w in equation (13.91c), as

we can see from system (13.91), is equal to the deflection angle of the con-

trol surface 6 and to the angular rate of change of the line joining the mis-

sile and the target 6. If we eliminate all of the variables except a from

equation (13.91)_ we also obtain a hypergeometric equation with the same par-

ameter a and with parameter b = 2

d_' + (2-- _) ÷ (k-- 2)_=0, (13.91d)
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where, as before,

l "lo--t

T z T, •

The characteristic equations for (13.91c) and (13.91d) have one zero root

and one negative root:[p2 = -3 for (13.19c) and P2 = - 2 for (13.91d)]. Thus,

all coordinates 6, 6 and _ near the target approach infinity, even though the

miss becomes equal to O. It would be more correct to say that the target can

be hit alternately when the angle of attack has an infinite value or when the

lateral control force is infinite. Since the latter is impossible, homing

guidance should be stopped when the angle of attack (or the load factors) reach

certain limiting values.

In the guidance process the angle of attack will vary in accordance with

the curves representing the hypergeometric functions. Atthe initial instant

of time, when the range is large, the angle of attack will decrease, and the

missile will go into a state of parallel approach. The selection of the initial

miss and decrease in the angle of attack are more pronounced when the amplifi-

cation factor k is high. As the target is approached, the hypergeometric func-

tions assume an oscillatory nature, and any perturbation leads to an oscillatory

_ncrease in the angle of attack. Homing guidance should be turned off until the

oscillations can be exited and after the state of parallel approach is estab-

lished and the angle of attack is practically equal to zero. After homing guid-

ance is turned off_ the flight of the missile becomes uncontrollable, and we

must consider the presence of inevitable interference. The shorter the range,

at which homing guidance is turned off, the shorter will be the time of un-

controlled flight and the shorter will be the miss. From the curves of hyper-
geometric functions we can find the value _ = t

turnoff' at which homing guidance

should be turned off. Because T - 1 r- , the turnoff range will be equal

T2 Vc6T 2
to

Lturnoff = _turnoff Vc6T2" (13.92)

Expression (13.92) shows that as delay decreases, Lturnof f decreases and

the miss decreases (during uncontrolled flight), while the probability of tar-

get distruction increases. Thus, the response of the control system is the

determining factor for increasing the probability of target destruction. In

this case the response of the system refers to the response of the entire loop

for the angular motions of the missile which contains the control system and

the oscillating member which establishes the relation between the angle of

attack and the angle of deflection of the control surface. The response of

this loop may be increased by increasing the natural frequency of oscillations

of the oscillating element, while retaining the optimum damping coefficient
0

4. An increase in the natural frequency of oscillations requires the use of
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Figure 13.20. Functional diagram corresponding

to control law 13.93).

the signal for the angle of attack or for the load factor. The necessary

damping is provided by signal w z = _, obtained from the rate gyroscope. Thus, the

law for the control surface of the missile during parallel approach will

have the following form
t

= - - - I (lB.93)
0

When we have ideal sensors for the angular velocity wz = 0 and for the

load factor (or the angle of attack) a, the functional diagram for homing

guidance with control law (13.93) has the form represented in figure 13.20.

Now let us consider the control of miss whose dynamics is given by a

group of equations (13.90). The equation for the relative angle of attack in

this case will have the form

d'_ " d" •
,c_ + (i -- x) + (T2k_ -- 1) _= O,

d': z

where as before _ = i

T 2

Both roots of the characteristic equation are equal to zero. Therefore,

the angle of attack will not increase when 1 _ O. From this point of view the

control law in terms of the miss has an advantage over the control law in terms

of the angular velocity. We can recommend a combined use of both laws: in the

initial stage we can control the angular velocity, and as the target is ap-

proached we can decrease the amplification factor k_proportionately to the range

i, [equations (13.90) and (13.91)]. If the range cannot be measured, we can

decrease the amplification factor as a function of time, because we do not re-

quire a particularly high accuracy. We can use the same procedure for the in-

tegral law (13.93) by changing both coefficients k_ and q_ correspondingly.
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Section 13.4. The Dynamics of Homing Guidance in the Pursuit Method

Let us consider the dynamics of homing guidance for the pursuit methods

without lead angle and also with a constant lead angle, and a lead angle

proportional to the angular velocity of the line joining the missile and the

target.

1. The Dynamics of Homing Guidance for the Pursuit Method Without Lead

Angle and With a Constant Lead Angle. As in the preceding case, the unper-

turbed state is assumed to be the one in which the velocity vectors of the

missile and the target are constant, and constant lead angle @=_e-0e is chosen

so that in the unperturbed state the angular velocity of the line joining the

missile and the target @ is equal to zero. For homing guidance without a
e

lead angle in the unperturbed state, the velocity vecotrs of the target and
the missile are situated on one line. Their direction is either the same or

opposite.

v -e _-
- I "_P

a , c

Figure 13.21. Homing guidance using pursuit method

without lead angle and with lead angle.

Thus, the linearized kinematic equations and the expressions for the

miss, which were derived earlier (see section 13.2), remain valid for the pre-

sent case.

In homing guidance using the pursuit method without a lead angle, the

simplest target coordinators are used (homing guidance heads), which produce

an electric signal proportional to angle c between the line joining the mis-

sile and the tsrget and the optical axis of the target coordinator (fig.

13.21a). It is quite natural to use the signal for angle ¢ as the basic sig-

nal for guiding the missile in the pursuit method. This signal reacts on the

control surfaces of the missile in such a way that angle ¢ is reduced to zero.

The optical axis of the coordinator coincides either with the longitudinal axis

of the missile or with the flight direction (with the velocity vector of the

missile). In this case the homing method is called "feathered." To achieve

feathered homing guidance, the target coordinator is oriented along the incident
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airstream, or the total signal which reacts on the control surface contains
a signal proportional to the angle of attack.

During homing guidance, using the pursuit method, with a constant lead
angle (fig. 13.21b), we can also use the simplest target coordinators which are
used in homing guidance without a lead angle. A constant lead angle is a_signed
when the missile is launched and maybe recorded aboard the missile by two
methods:

(i) by meansof the position gyroscope of the target coordinator, whose
axis coincides with the longitudinal axis of the missiles;

(2) by meansof a rotating target coordinator.

In the first case a constant signal is fed to the control membersof the
missile from the position gyroscope. This signal is balanced by the signal
from the target coordinator, which produces the necessary lead angle _. To
realize this method, it is necessary to have a relatively wide region for the
proportional characteristic of the coordinator _¢ = f(¢) (fig. 13.21c), with

a curvature independent of range. In the secondmethod this region maybe
substantially less.

In homing guidance using the pursuit methodwith constant lead angle_
the signal acting on the control surfaces is the signal which measures angle

between the optical axis of the homingguidance head and the direction of the
line joining the missile and the target, displaced by the constant lead angle _.
Feathered guidance is also possible in homing guidance with constant lead angle.

Thus, angle ¢ for nonfeathered guidance is expressed in the following
manner

while for feathered guidance it is expressed by
•

If we express _, e and _ in terms of their unperturbed values _ , e
e e'

and increments A_, Ae and AS, and note that in the first case _e-@-_e=O,e

while in the second case _e-_-ee=0, we obtain, respectively

e=A?--AO =A?-.AO--A_,

and

(13.95)

e = A_--A0. (13.96)

If we note that the expression for the angle ¢ contains the angle _ (or

A_) the kinematic equation for the coupling between the target and the missile

442



should be taken in the form (13.51). When constructing the functional diagram

it is more convenient to consider the negative value of A_--the quantity Aqm_ =

A_. In this case c = - A%_* - AS. Taking this into account, the system of

equations of motion of the missile has the following form ±

l a_? Ap = _ kvAO,
dt

T dbO • a
V dt----T-_ ,

d'Z_ d_
T_ _ --_ 2_2T_ _ _- _ = @28,

A_ =--_ @AO,

8=k._, "

_.=k,_o_A_-- __ -

(13.97)

or for the case of feathered guidance

¢ = b_o A? _ AO.

The second, third and fourth equations of system (13.97) are the well-

known equations of missile dynamics with constant velocity. The fifth and

sixth equations of this group are the equations of an ideal control system.

The signal A_0 = const in the last equation represents the possible error inset-

ting lead angle 4, or the angular error in setting the target coordinator

when guidance is performed without a lead angle.

The functional diagrams corresponding to equations (13.97) for feathered

and unfeathered homing guidance are shown in figure 13.22. Expressions

(13.97) and functional diagrams are valid both for guidance with a constant

lead angle as well as for guidance without a lead angle.

The coefficient kv depends on the different directions of homing guid-
ance with a constant l@ad angle

V
kv =--K-v cos'(_ " e_)= -- cos _,.
• V¢6 VcO

(13.98)

This coefficient is contained in the first equation of (13.97). Thus: when the

attack takes place from the rear without a lead angle kV > 1.O, and when the

attack takes place from the front, kV < 1. When a stationary target is

iThe unperturbed value of the angle of attack a e = O. The sign (*) for A_ in

the equations and in the functional diagrams is dropped.
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attacked kv = 1.O. The coefficient _ is positive, because the lead angle

> _ is difficult to realize and is not required.
2

To investigate the dynamics of homing guidance with an accessible method

we neglect the delay in the establishment of the angle of attack and consider

the following system of equations

l d__ A,_ =: -_ kvbO ,
dt

Tv dA0
dt

_. kLE:,

(13.99)

or for feathered guidance

• s_._ A_o _. A?._ A0.

• a %--a _ k.

b

a%-a

I1• " • " i !

Figure 13.22. Functional diagram corresponding to equa-

tions (13.97). a--for unfeathered guidance; b-- for

feathered guidance.

The coefficient k in the fourth equation (13.99), unlike in the fifth equa-
E

tion (13.97), is a portion of the angle of attack per unit angle e.

First let us analyze the case of unfeathered homing guidance. Eliminating

variables Ae, A_, A_ and s from equations (13.99), we obtain an expression for

A_
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[ k___l k,i kwkt! .
I d2_3' + l--2) _ + (kv l)

(13.1oo)

where

We can see from equation (13.100) that, in the first place, the error in

the establishment of the lead angle AgO produces a deviation of the missile's

trajectory from the unperturbed states; in the second place, an increase in

the amplification factor does not affect the dynamics of homing guidance, and,

in the third place, expression (13.100) is a degeneratelhypergeometric equation
of type (13.80) with parameters b = 2 and a = -(k - i) . In this case there

V

will be an increase in the coordinate A_ in the region of the target. We should

also add that the increase incoordinate A_ will be most pronounced when attacks

take place from the front hemisphere, when kV < I and the last coefficient of

equation (13.1OO) is negative. For the "frozen" coefficients of equation (13.1OO)

the case k < i means that stability is lost, because one of the roots of the

characteristic equation becomes positive. In the same way s in the solution of

the equation with variable coefficients, i.e., in the solution of equation

(13.1OO), as it stands, when _< I, there will be a component which increases

with time. With an unfavorable combination of initial conditions A_O and A_O ,

this component may become most significant, in which case there will be a

monotonic increase in the deviation A_ from the beginning of guidance.

Let us consider this equation in more detail and establish the combina-

tion of initial conditions described by equation (13.1OO) which will be par-

ticularly undesirable. Let us "freeze" the coefficients of equation(13.1OO).

In this case the solution of the homogeneous equation with given initial values

A_O and A_O will have the form

A_= _°±a_°_ e-°'+ _°+A_°_e;_% (13.101)

where _ is the absolute value of the large root of the characteristic equation

Pl = -0; and _ is the absolute value of the small root of the characteristic

equation•

k.z /
Iwe can prove this by introducing a new independent variable _= IG--[4--1)-_r •
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Figure 13.23. Graphs constructed by means of

equation (13. i01).

When kV > i, the small root is negative (P2 = -_)' while when _ < I,

it is positive (P2 _). As we can see from (13.101) the combination of

initial conditions A_0 = 0, A_O _ 0 refers to the unfavorable case, because

the significant component in this case is determined by the small root. Figure

13.23 shows the process given by expression (13.101) with a small positive and

negative root P2 = ± _ for the above initial conditions.

As we can see from figure 13.23, the initial deviation damps very slowly

when P2 = - _ and begins to increase almost immediately whefl P2 = _"

zero root P2 0.

A,p -----a_.--_° (I-- e -°t) +'A_po.
(I

For the

(13.102)

The initial deviation will vary from A_O to A_O + g_O when t _

let us see how the angular velocity A_ will vary. After differentiating
(13.101) we find

A_ = ._o • _o_ oe_.°t_ _ A_o +A_O,_e_V _

Now

(13.103)

For initial conditions g_O = O, A_0 _ we have

A_--_[ae °t¥ _e_']. (]_3.104)

With this combination of initial conditions the small root (positive or

negative) has no practical effect on the decrease in the angular velocity.
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The small root of the characteristic equation means that the value of co-

k._ (kv--I) in equation: (13.100) is small. Therefore, the analysis
efficient T-v

which we have conducted is entirely valid with respect to the initial stage of

the solution given by nonstationary equations of type (13.100). From (13.100)

we proceed to the equation for the miss X. We differentiate equation (13.100)

and note that

day 1 (13. 105 )
dl V¢cl2

After differentiating (13.100), making use of (13.105) and _transforming to

an independent variable l, we obtain

l[l + k"t]r .] + (13.1o6)

Vc6kvk, l 3 dA_o

TV dl

We see from equation (13.106) that the constant error A_0 does not produce

a miss. The characteristic equation for (13.106) has no negative roots. Con-

sequently, in spite of the increase in the angle A_, the initial miss will be

selected up to zero. However, this decrease in the miss to zero is accompanied

not only by the increase in the coordinate A_, but also by an increase in the

angle of attack, and the natural zero value of miss takes place only when the

angle of attack is infinitely large which, of course, is impossible.

By eliminating the unnecessary variables from expressions (13.99) we

find the equation for the angle of attack (when A_o=O )

dt_ +\rv .'it -- r_, _ ..
(13.107)

This relationship is also a degenerate hypergeometric equation of type (13.80).

The equation of the miss (13.106) may have a small value for the last co-

ke 1

efficient_--- kv, while the equation for the angle of attack (13.107), like
V

equation (13.100), may have a negative value for this coefficient. However,

the miss is proportional to dA_/dt and the angle of attack is proportional

to dAS/dt, while for angular velocities according to (13.104) the effect of

the small last coefficient inthe equation is insignificant. Thus, for the

miss and for the angle of attack the process at the initial stage of guidance

will converge rapidly. For angles A_ and AS, as indicated by (13.101), the

process may converge slowly (kV > I), or diverge (k < i). However, this isV

insignificant, because this result merely means that angles A_ and AO are in-

determinate when the missisle approaches the target.
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Now let us consider the case of feathered homing guidance. From equations

(13.99) and (13.96) we obtain the respective expressions for deviation A_, miss

X and angle of attack

T V

[ k' i] d" kvk. d_,'¢o
1 '_''_" -- 1 1 -_- + k,k,, lz _ V_6--I J

dl 2 T V --_ T v T V dl '

J

.dT+ I--2

(13.108)

Equation (13.108) does not differ in any way from the corresponding equa-

tions of unfeathered homing guidance. However, the amplification factor k

k e
- for the unfeathered guidance) may be assigned any desirable

(unlike kcl k¢ + i

value. Consequently, by selecting k we may realize a desirable rate of de-
c

crease in the deviations and the miss along the initial region of homing

guidance. Thus, feathered guidance may provide for higher hit accuracy pre-

cisely because k¢ can be controlled. Regarding the unfavorable phenomena which

can occur in the motion of the missile when kV < i ( for the angle A_), the

picture for feathered homing guidance remains the same as for unfeathered homing
guidance.

2. The Dynamics of Homing Guidance for the Pursuit Method with an Auxiliary

Lead Angle, Proportional to the Angular Velocity of the Line Joining the Mis-

sile and the Target. Let us require that the lead angle for any deviation from

the unperturbed state increase by a value proportional to the angular velocity

of the line joining the missile and the target.

To achieve this effect we must send a signal to the control surfaces pro-

portional to d_/dt = dA_/dt. If we neglect the process for the establishment

of the angle of attack, the angle of attack must satisfy the law

= ----k,¢ -_ k_ d-_ (13.109)
dl

From the first three equations of (13.99), from equation (13.95) and from

the control law (13.109), after eliminating the corresponding variables, we ob-

tain an express$on for A_

i
dt_ =_[rv TI,(_Tk,)]] at + T-----_k,,A?= O, (13.ii0)
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where

k,-[-I

"kEl k _l
After we replace t by _-- l-- (I0 --t) , equation (13.110) trans-

Tv Tv

forms into the hypergeometric equation (13.80) with parameters

b=2 kvk_k"

and Tv

a---(k/- I).

One of the roots of the characteristic equation is equal to zero, while the

second is equal to p = 1 - b. By properly selecting kS we can always satisfy

the condition b < 1 (or p > O) and, consequently_ prevent the increase in the

coordinate A_ near the target. The same conclusion is obtained with respect

to the angle of attack.

By comparing expressions (13.110) and (13.100) , we see that by intro-

ducing the signal dA_/dt into the control law we can increase.the damping pro-

perties of the system (because by selecting the coefficient k_ we can change
the value of the coefficient in front of the first derivative). The last co-

efficient of the equation did not change when the additional signal dA_/dt

was introduced with a portion of k_ . Therefore, everything we have said

concerning the behavior of the coordinate A_ remains valid in the present

case.

To realize the control law (13.109) it is necessary to measure the angular

velocity of the line joining the missile and the target. When going over to

parallel approach it is sufficient to let the coefficient k be zero in the

control law (13.109). In this case equation.(13.110) is transformed into an

equation of the first order with respect to _ = dA_/dt.

3. The Dynamics of Homing Guidance Using the Pursuit Method When Attack-

ing a Stationary Target (With and Without a Lead Angle). When the target is

stationary_ kV = I and all of the equations for the angle of attack and the

miss considered in subsections i and 2 of the present section degenerate into

equations of the first order_ because these quantities are_ respectively_ pro-

portional to the angular velocities dAe/dt and dA_/dt. It has already been

pointed out that in this case angles Ae and A_ are indeterminate when the mis-

sile approaches the target. First, let us show how the equations for the miss

(13.106) degenerate into equations of the first order. We multiply this equa-

tion by 1-3 and write in terms of the variable t.

I a'2_ ( k,i l_1' _ d-,_ k,tl- _+ 1-2+_ +_l-2z=O.
dl_ k T v ]. dt Tit

(13.111)
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By making a check we see that equation (13.111) is an equation of the

first order, which has been differentiated once after it was first multiplied

by l-x- 1
lo _ t

d'k Jc k'l x = O,

at ,z v (13.i12)

Thus, the miss incurred in attacking the stationary target varies in accordance

with the solution of the first order equation with constant coefficients_ spe-
cifically

_ k,__Kt (13.113 )

_XO e TV

The smaller the value of T and the greater ksl , the more intense is the de-
V

crease in the miss. For feathered guidance k¢l must be replaced by kc, and the

intensity of miss decrease may be increased.

Turning to equation (13.107) for the angle of attack when _ = i, we have

id_dt" {k., ) _, (13.1141-_-kr v l--2 ]d_ ' a=O.dt T V

Similar to expression (13.111), this equation becomes a once differentiated

equation of the first order

;-x)1--_+ k r v a=O.

(13.115)

Equation (13.115) may be solved by separating the variables

k 1

-_=% Io e r_t
• lo_t

(13. ll6)

In accordance with equation (13.116) the angle of attack will first de-

crease, because the term k_
---t increases. Towards the end of homing guidance /456

C rV

the picture changes and the term _ increases more rapidly 3 while the term
k Io --t

t|

e. r/ is almost constant. As a result, when t _ I0, the angle of attack a _ _.

Thus, the exponential damping of the miss is achieved only when the angle of
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attack has an infinite value in the region close to the target. Since this is

impossible, homing guidance must be stopped at some distance from the target.

According to expression (13.116), the angle of attack has a minimum. Let

us find this minimum and the time when it occurs. After differentiating equa-

tions (13.116) and setting the derivative equal to zero, we have

lmin_lo Tv (13.117)
k,!

and

k, l -|--_--to-_ }
_min "_ _010 _ e _ -v (i3.i18)

According to equation (13.113), the miss is damped to a value equal to 5

Tv
percent of its initial value after 3-- . This value of the miss coincides

k,l

with the minimum value of the angle of attack, when the initial range is Io=4 Tv
k,l

If we assume that T V ; 1.0 see, k e = 2 k.x_-_-y , then 1 -- 4 3/2 = 6 see,
0

which, for example, when the velocity ±s 200 m/see, will be 1200 m. When the

initial range is greater than 4V _ , the miss will become 5 percent of its
.. .kt I

initial value, before the angle of attack reaches its minimum value. This

L0
minimum value is smaller when the initial range I02---_is longer. Let

TV.

us now see the minimum value of the angle of attack, when l0= 4 k.i,

_,,_i.= %4e-3_ 0°2%.

Thus, at the instant of time when the miss is reduced to 5 percent of its

initial value, the angle of attack will be reduced to 20 percent of its initial

value. This value of the angle of attack is determined in terms of the initial

value of the miss. To establish this relationship, we write down the system

of initial equations for a stationary target (for example, for feathered guid-

ance)

l d_......._= A_ " AO, "_
dt

dA_
Zv-- =a,

dt

: A? -- AO=-- h.

(13.119)

/457
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From the last two equations we find

I (13.120)_ct = A? _ AO.
: .ktl

Furthermore, for a stationary target we obtain ghe following expression
from equation (13.105)

d_ I (13. 121)
dt yl _

Comparing the first equation of (13.119) and expressions (13.120) and

(13.121), we find an expression for the miss which is characteristic for this

case

Vl L
- _ = -- _ a. (13.122)

k'1 k,l

From this we obtain the initial value of the angle of attack for a given
initial miss

k,l
ao = -- _ %" (13.123)

4

We note that the equation for the angle of attack (13.115) may be obtained

directly from system (13.119). Then, by using relationship (13.123), we can

obtain the equation for the miss.

Let us also consider the effect of the signal proportional to the angular

velocity dA_/dt in the control law (13.109). If we replace the third expres-

sion in system (13.119) by equation (13.109), we obtain an equation for the

angle of attack

at + k Tz
k,,k4, kS' _ _ : 0' (13.124)

TV l+ k@i ]

where

k,l = k, k_
k, +----i" aria k_l : _.

In this case the miss expressed in terms of the angle of attack will have

the following form

x = VI2_ (13.125)
k,,@+k4,)"

Using this expression we obtain an equation for the miss from (13.124)

dx'-k -- z=O.
at T_, t (13.126)
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Both equations are solved by the separation of variables

"" A 1

r F

"4-i-k,ilk 4 1

(13.i27)

and

where

k I

b " k'xk6[ &_
TV rv(k,+ I)

As we can see from these expressions the decrease in the miss take place

more rapidly than the exponential law, and the angle of attack for b > 2 will

not have a minimum, and when t = 10 it will be equal to zero like the miss.

Therefore_ additional control of the angular velocity produces favorable re-

suits.

(13. 128)

Let us compare law (13.109) with the law of parallel approach when attack-

ing a stationary target. To guide the missile by the method of parallel ap-

proach, it is sufficient to set k = 0 in expression (13.109)
C

= k,_ da_, (13.!29)
dt

Using the first two equations of (13.i19) and equation (13.129), we obtain

the exNression for the miss and for the angle of attack

_ k,_ (13.130)l--+--z=0
dl T r

and

l-_-+ -_v --2 a=O. (13.]31)

and

From the solution of these equations we obtain

k"

(,+)_2a _ _0 TV

(13.132)

(13.133)
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Co<_naringexpressions (13.128) and (13.132), we note that in the first case

the decrease in the miss due to the exponential factor takes place more intensely.

From this point of view the combined law (13.109) is more effective than the law

of parallel approach.
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CHAPTER 14. THE DYNAMICS OF EXTERNALLY GDIDED MISSILES

Section 14.1. Formulation of the Problem

Externally guided missiles are directed to the target by signals from the

control point. The simplest method is the method of beam guidance. We recall

that in this method target and missile are sighted continuously from the con-

trol point.

Guidance consists of keeping the missile on the target sighting line

(fig. 14.1). If the missile is maintained on the sighting line, the three

points--control point_ missile point and target point--always lie on one

straight line. The mismatch sigra] represents the angular _ or linear _ de-

viation of the missile from the sigmting line. The angular mismatch is taken

into account by the visual control of the missile and the target. In this

case the human operator sends signals over the guidance link to deflect the

control surfaces of the missile. The measurement of the linear deviation e

may be realized by means of a radio beam. in this case its equisignal zone

coincides with the line joining the control point and the target (cp-T).

i
cp

Figure 14.1. Schematic diagram of beam guidance;

cp = control point; C = missile; T = target.

In the general case, when the coordinates of the target and the missile

are measured at the control poin% computers may be used to obtain the most

diverse methods for guiding missiles to the target. In particular_ all of

the methods of homing guidance considered in Chapter 13 may be applied. In

this case the dynamics of missiles with homing guidance and with external

guidance will coincide. The difference will only be in the engineering methods

of realizing any of the guidance techniques. In homing guidance the control

signals are formed at the missile_ while in external guidance they are formed
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at the control point and are transmitted to the missile over the remote control

link.

In this chapter we consider the kinematics and dynamics of the beam method

and also some other methods of guiding missiles to surface and aerial targets,

achieved by means of external guidance.

Section 14.2. The Kinematic Trajectories of the Beam Method

In the general case, the target and the control point are displaced with

velocities VT and Vcp. This general case corresponds to guidance of air-to-air

missiles by the beam method. The missile velocity V is usually greater than

velocity Vcp of the airplane which launches and controls this missile. Impor-

tant specific cases are as follows: (1) V = O--guidance of the surface-to-
cp

air missile and (2) V T = 0--guidance of the air-to-surface missile.

Let us write the kinematic equations for the pairs target-control point

and target-missile, assuming that the missile is situated exactly on the tar-

get sighting line (fig. 14.2). The equations of the target-control point have

the form

Lc_=v_ cos_ - _pcos (_- %,) /' (14. l)

Lcp _= -- _ sin _ -|- Vcpsin (_-- Oo), /

while the equations for the target-missile have the form

L :'_p: ,: .Vcos(?-o), /

L,e.... Ve>si__ +Vcos ('e-- 0). !
(14.2)

The values of the angles in equations (14.1) and (14.2) are shown in figure

14.2. The equations are written for rectilinear target motion_ and the quantities

VT, V_ Vcp , and e must be assigned as functions of time. Because in the kine-cp

matic formulation of the problem the missile is always maintained on the sighting

line# the angular velocities and the instantaneous angular positions of the seg-

ments cp-T and C-T (fig.14.2) always coincide. This is reflected in equations

(14.1) and (14.2) by the introduction of quantities _ and @, common to both con-

trol methods.

To establish the trajectory of the missile and the necessary handling

analytically, it is necessary to solve equations (14.1) first and to find

= _(t)_ and then to use the solution of equations (14.2) and find L = L(t),

0 = 0(t). The analytical solution of equations (14.1) and (14.2) may be ob-

tained only in the form of series; therefore, graphical methods are used to
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Figure 14.2. Geometric configuration
of target, missile and control point
in beammethod.

Target
trajectory Impact

_ 1 point

i

Trajectory of

control point

Figure 14.3. Construction of kine-

matic trajectory for beam method.

obtain the kinematic trajectory and the guidance time. These graphical methods

are very simple (an example is shown in figure 14.3. In regard to the necessary

handling or the angular velocities of the missile velocity vector, they can be

obtained analytically in special cases. Thus, for the case of a surface-to-

air missile, we have the following anal_ical expression for the angular ve-
locity of the missile's velocity vector _

b _-2--VT_i_b [1 +
- HT (

Lc ctg _? '_

_/ k 2 "'1 '

(14.3)

where H T is the constant altitude of the target; L c

V
•from the control point to the missile; and k = _.

T

=L
_p

- L is the distance

This equation is valid for _ = const, V T = const and V = const.

In the guidance of air-to-air missiles it is possible to reduce the load

factors of the missile by maneuvering the airplane which controls the missile.

When _T = const, the control point may be maneuvered to obtain a rectilinear

missile flight. The flight of the airplane, controlling the missile when it

makes a parallel approach to the targ@t, permits least load factors of the mis-

sile when the target undergoes maneuvers, and reduces the handling to zero

when attacking a target not undergoing evasive maneuvers. Indeed, during the

IA. S. Lokk, Guided Missiles, Gostekhizdat, 1957.
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flight of the airplane with the control point_ _ = 0 and _ = const during a
parallel approach. Both of these conditions are also satisfied for the missile.
Consequent!y_ the missile also goes to the target along the parallel approach_
i.e._ in the most economical way from the standpoint of load factors. Thus_
when the airplane with the control point undergoes optimummaneuvers_the beam
guidance method is reduced to homing guidance with parallel approach, considered
in Chapter 13.

ist be_ __i

cp__2nd beam

Figure 14.4. Schematic diagram showing beamguidance
of missile by using second radar to track target.

Wenote that in any case the beamguidance problem is reduced to a homing
guidance problem with a lead angle 4, which is a function of time and of various
quantities depending on the homing guidance method. For the beamguidance of
surface-to-air missiles we can obtain the parallel approach of the missile to
the target. However_because the control point in this case is stationa_j, the
parallel approach maybe realized by meansof two beams (fig. 14.4). Oneof
the beamstracks the target, while the second beamis used to guide the mis-
sile. The angle _ between the beautscan be varied in any mannerby rotating
the second beam. This is done in such a way that we achieve a parallel ap-
proach of the target by the missile. However, regardless of how angle
varies, at the instant of time when the missile hits the target angle _ must
be zero_ and the axes of both beamsmust coincide.

In the present chapter we shall describe other variations of the external
guidance systems by which any methods of guidance can be realized, including
the method of parallel apprQach.

Section 14.3. Dynamics of Guiding the Missile Along the Beam

An investigation of the dynamicsof a missile moving along a beamwill
clarify the structure of the missile guidance system which holds the missile
on the be_v_ as well as the accuracy of this operation or the accuracy of
maintaining the kinematic trajectory.

First let us consider the dynamics of a missile in the simplest case;
i.e., when the beamis stationary in space. The beammay becomenonstation-
arywhen the target velocity vector and the control point velocity vector
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coincide with the sighting line or with the equisignal zone of the beam_ or }then

the velocities of the target and of the control point are equal to zero. i_his

situation occurs when the target is attacked by an air-to-air missile directly

at its tail or its head, or when a stationary target is attacked from a station-

ary control point.

cp

f

T
J

Figure 14.5. Position of missile with respect to

target sighting line.

Figure 14.5 shows the general case for the position of a missile with

respect to the target sighting line, which in this case becomes the given tra-

jectory. The missile deviates from this trajectory and has a nonzero initi_l

velocity dyg/dt. In addition, the missile may be subjected to a side wind.

in the present chapter we also consider the dynamics of plane motion. Bec_use

in this case motion may take place in the vertical, horizontal or any other

plane_ the output coordinate of the system will be designated by y (in Chapter

ii this is designated by Zg and yg), the input coordinate will be designated

by x(t) (in Chapter ii it was designated by z (t) and y (t), the error will be
3 3

designated by e = x(t) - y(t), the angle between the velocity vector and the

direction of the given trajectory will be designated by $6, and the angle be-

tween the longitudinal axis of the missile and the direction of the given tra-

jectory will be designated by 4- The control of the motion experienced by the

missile's center of gravity, both in a calm atmosphere as well as in the pres-

ence of wind, is considered in detail in Chapters ii and 12. These chapters

present the diagrams of control systems for the center of gravity, which

operate on the basis of various principles and give recommendations for selec-

ting the parameters of these control systems.

Let us consider the special features associated with the motion of the

center of gravity when the missile must move along a moving beam. Precisely
this case is of most interest.

Chapter 12 presents general information on errors occurring when the

missile moves along moving and curvilinear trajectories, and also presents

methods for eliminating these errors. It is precisely these cases that are of

most practical interest in beam guidance.
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Figure 14.6. Trajectory of missile guided with beam

by method of parallel approach; subscript H = fixed.

Let us consider an example which clarifies the use of these data in s_udy-

ing the motion of missiles along a beam. We consider the simplest case, when

the beam is displaced in space parallel to itself. As we already mentioned,

the beam will move in this manner if the control point moves towards the tar-

get according to the law of parallel approach.

If the fixed system of coordinates is situated as shown in figure 14.6,

the assigned value of a coordinate ¢ilI vary according to the law

x(t) = kt.

in Chapter ii we pointed out that for a given control law the missile

may move, when the coordinate x(t) varies according to this law_ either

exactly along the beam or with an error obtained from the differential equa-

tion of the missile control system. The solid line in figure 14.6, which

passes through points i, 2, 3, • ., is the trajectory for the stationary

motion of the missile which has no static error for the law x(t) = kt. Point

8 is the impact point of the missile and the target.

_me broken trajectory i', 2', 3',. ., is the trajectory of a missile mov-

ing with a systematic error. This trajectory occurs when the control laws do not

include an integral term. Since the missile moves with an error, at the moment

when the target has approached pont 8 the missile has approached point 8' As

we can see, in this case the missile misses its target. Whether we have an error

or not, a constant lead angle 01ead is established between the beam and the mis-

sile velocity vector (similar to the drift angle caused by wind). This angle
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corresponds to conditions for the parallel approach of the missile to the tar-

get .i

For curvilinear kinematic trajectories, when any control laws are used, an

error will be observed_ i.e._ the deviation of the missile from the kinematic

trajectory. This deviation may be determined, if we compute the initial accel-

eration necessary to realize the kinematic trajectory (Chapter 16).

Section 14.4. Dynamics of the Beam Method During Visual Sighting

At the present time various systems are used to isolate targets, using

some contrast feature of the target which separates it from its background. 2

These systems use the radiation or reflection of some form of energy by the

target. The visual recognition of a target is still widely used in the guidance

of missiles. The visual guidance of missiles is sometimes simpler and more

reliable than the use of complex radar or infrared guidance systems. Visual

methods may be used to guide the air-to-surface_ surface-to-air and air-to-air

missiles (when the velocities are small) and also to guide surface-to-surface

missiles used at the battlefield.

The beam method is the natural method for guiding missiles visually. The

operator observes the position of the missile and of the target through a sight

and sends control signals to the missile attemptingto keep it on the sighting

line. in the case of ideal guidance the image of the missile in the sight coin-

cides with the image of the target.

The control signals sent to the missile are obtained by means of a special

control lever. The kinematics and construction of the control lever are deter-

_ned by the aerodynamic shape of the missile. In the guidance of missiles with

cruciform wings, which are controlled in the Cartesian system of coordinates,

the control lever may move in mutually perpendicular directions "right-left"

and "up-down." Figure 14.7 shows the guidance of an air-to-surface missil_.

The up and do_a movement of the control lever produces a proportional displace-

ment of the missile's altitude control surfaces. The right and left movement

of the lever (normal to the plane in the drawing in figure 14.7) produces a pro-

portional deflection of the rudders. To prevent the interchange of the two con-

trois, the missile must be stabilized with respect to its longitudinal axis

when it moves toward the target. Any missile with cruciform wings guided by a

beam is stabilized in this way.

l_qen the missile moves with an error_ angle 81ead corresponds to conditions

for theparallel approach to the point situated behind the target at a certain
constant distance.

_. i. Marisov and I. K. Kucherov, Guided Missiles, Voyenizdat, 1959.
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down _ up

emote control link

ontrol

Figure 14.7. Guidance of an air-to-surface missile

with cruciform wings by means of control lever.

The guidance of missiles with plane wings is accomplished by using a

polar system of coordinates. As shown in figure 14.8, the control lever

rotates about the longitudinal axis and is displaced from its vertical

position in any direction. The displacement of the lever around the longi-

tudinal axis changes the tilt angle and produces the same rotation of the

missile around its longitudinal axis. The displacement of the lever from its

vertical position produces a proportional deflection of the altitude control

surfaces. Whether Cartesian control or polar control is used, the operator

follows the same procedure: when the image of the missile is displaced from

the image of the target, he must displace the control lever in the direction

of the line joining the missile and the target. In the case of Cartesian

control this leads to the required ratio in the displacement of the direction

and altitude control surfaces, while in the case of polar control this leads

to the coincidence of the missile's plane of symmetry with the line joining

the missile and the target , and to the corresponding deflection of altitude
control surfaces.

W /

\ /T

\ missile // direction of

_._ _ lever tilt

Figure 14.8. Control of missiles with plane wings

by means of control lever.

In this control method the operator is directly included in the missile

control loop. For visual guidance the operator controls the missile, depend-

ing on the angular deviation _ of the missile from the target sighting line
(fig.
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W-hen_ is small we have

4> (!4.4)

where ¢ is the deviation of the missile from the beam in the vertical plane;

and L is the distance from the control point to the missile. When the missile

= V t, where V c ismovesCaway from the control point with constant velocity, L c e

the velocity at which the missile moves away from the control point.

Assuming that V = const, we differentiate (14.4)
C

= V¢$ + Va'. (14.5)
dt

Assuming that in this case V8 + W = d¢/dt, we obtain

(14.6)• V

t_+ u .... O-J-----,
' V¢ V¢

where e is the deviation of the velocity vector from the beam, and W is the

normal wind component.

If we know the relation between angle b and angle O, we can construct the

schematic diagram for the visual control of a missile shown in figure 14.9. The

transfer function which relates angle b to angle @ consists of an inertial ele-

ment with a continuously increasing time constant. During the guidance process

the operator must develop a transfer function providing for the stability of

the control loop (fig. 14.9); he must also maintain sufficient accuracy and

" " " la ]-_ •

a

Figure 14.9. Schematic representation of system for

visual control of missile.

rigidity in the stabilization process in the presence of perturbations in the

form of lateral wind or excessive handling, which occurs when the missile moves

along a curvilinear trajectory. It is well known that the operator can most

easily perform the. function of a simple amplifier, in this case, according to

extensive experimental data_ the transfer function of the operator has the

form /

e-P'oP koP ' (14.7)
(/,)--- +

(subscript op = operator),
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where _ _ 0.25 sec and T = 0.i - 0.3 sec.
op op

It follows from expression (14.7) that the amplification of the signal by

factor kop is accompanied by transfer delay Top , experienced by the operator,

as well as by a del_y which corresponds to that of an inertial element with the

time constant Top. However, in the control loop shown in figure 14.9 the trans-

fer function of the operator which has the form of a simple amplifier is ob-

viously quite insufficient. The operator must realize a transfer function of

the type

( p+l) e _°p

Wop(P) = TIo p ko p (14.8)
T_op.p_ + i

where Tio p >> T2o p.

It is difficult for the operator to realize this transfer function, and

he can only do this after extensive training. However, under complex combat

conditions even an experienced operator can lose control of a missTle.

To improve the effectiveness of control, it is necessary to remove the

operator from the control loop without losing the advantages associated with

the visual detection of a target. This can be achieved by dividing the

channels for the sighting of the target and of the missile. The channel for

sighting the target remains under the control of the operator. The channel

for sighting the missile is automated by an automatic missile tracking sys-

tem at the control point. The automatic tracking system of a missile is not

complicated, because the missile may contain a responder to signals from the

control point. The problem encountered by the operator now becomes consider-

ably simpler. He is only required to maintain the target at the crosshairs

by displacing the moveable plate with the crosshairs with respect to the

sighting plane. The signal picked up by the sensors on the plate will be equal

to the bearing ¢ from the control point to the target. The signal which is

picked up by theTsensor of the automatic tracking system will be the bearing

to the missile _c" The difference _T - Cc = _ is the unknown angle between

the direction to the target and the direction to the missile from the control

point. Because signal e is now electric, it may be transformed in any re-

quired manner. In particular, if we multiply e by the Lc we obtain yf, which

is the lateral displacement of the missile from the beam. If we have signal

Yf, we can construct any of these beam control systems. The operator is now

outside the control loop, and his property of identifying the target is

fully retained.
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Section 14.5. Placing the Missile on the Beam

As a rule the launching point of a missile does not coincide with the axis

of the beam. Therefore the missile is launched towards the beam, and the con-

trol system must place the missile on the axis of the beam. The missile con-

trol system is turned on under certain nonzero initial conditions WI _:Y0 and
|

-_!'t/I0_/si_i00 ...._/0,_(fig. 14.10). The missile must be placed on the beam under_ItI¢ '

these conditions. The deviation signal obtained aboard the missile is always

a nonlinear function of the deviation proper y. A typical form of this non-

linear function is shown in figure 14.10. The nonlinear function has a linear

region -m _ y _ m, and it is only in this region that the linear equations and

structural schemes presented in Chapters ii and 12 are valid. In all these

structural schemes with integral control the transfer functions will definitely

exhibit overcontrol. It is known that the transient func'tion as a reaction to

/4U

4 7_/__s, null signal

__y sigz al

.

Figure 14.10. Position of missile with respect
to radio beam.

step signal Y0 l(t) represents a mirror image with respect to the axis of the

abscissas of the transient process with initial conditions y(0) = Y0J y(0) =

= . .... 0, and is  isplaoe by amour YO (fig.14.1l).

If 9(0) = y(0) ='_(0) ..... 0, when the missile control system is turned

on and [yOf _ m, i.e., the missile is in the proportional band, the transient

process will be brought to a satisfactory conclusion, in the sense that the mis-

sile enters the beam because overeontrol AYoc is always less than YO" We must
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transient

Y(_)I function

_-_with initial conditions

a " b AYoc

Figure 14.11. Graph of transient function;

(a) and of transient process; (b) under spe-

cified initial conditions; oc = overcontrol.

always remember that when the control system is switched on, the initial velocity

of the missile with respect to the beam #(0) = Y0 is not equal to zero, but is

equal to Va 0 (fig. 14.10). In this case the sign of #0 is always such that it

leads to an increase in overcontrol. If we take into account the effect of y ,
0

it may turn out that Ay > m, i.e._ there is danger that the missile migh t
Oc

leave the beam and that control will be lost. To reduce this danger to a mini-

mum, the parameters of the system must be selected suchthat the overcontrol

property of the transfer function is as small as possible. However, in the func-

tional schemes considered in Chapter ii, a decrease in overcontrol is achieved

by increasing the control time. Consequently this method is undesirable. There

are other ways of solving the problem of placing a missile on the beam, which

do not produce an increase in the control time. By using modern computer ele-

ments we can obtain an optimum method for placingthe missile on the beam.

As an example let us consider a simplified system with integral control

(fig. 14.12). In this system the lateral control force and acceleration _

which is proportional to it, are established without delay and are proportional

to the total control signal.

Figure 14.12. Simplified diagram of system

with integral control.

Therefore, for the scheme shown in figure 14.12 we shall have
l

= -- r_ -- kyT/! -- ky _V dr,,
o
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where r is the feedback coefficient proportional to the transfer factor of the
automatic pilot i_.

The transfer function for the closed loop input-output system has the follow-
ing form for this schemeI

(s) = (T s + i) ky
s3-t- rs 2 -t l'vkys +ley "

(14.9)

Since this transfer function has a zero equal to -1/Ty, the transfer func-

tion will always exhibit overcontrol (fig. 14.11a). We obtain the Laplace

transform of this function if we multiply @(s) by Y0/S

[I:_:(S) =:(_)(S) .I_O= "

S

In the same way the Laplace transform of the process y(t) with initial conditions

Y0 _ 0; YO = YO = 0 (fig. 14.11b) will have the form

If, in addition, YO _ 0 , we have

[
-"_Iss_I[. {r-t- (14.1l)

Y" .... " Vo-
Sa -I" rs= "I- TykyS -1-/,'y

 Zhu

YO have oppositeIn this case overcontrol increases due to when YO and YO

signs_ and decreases when the signs of YO and YO are the same. So that the

value of overcontrol is not too great when the transfer function has the form

(14.9), the roots of the characteristic polynomial

A ( s ) -= s3 -k rs = -t- T/eys -[- ky

are selected so that they are real and are distributed in arithmetic progression

(table 2.3). However, as we have pointed out, this increases the control time.

Howeve_ if the roots of A(s) are selected so that they are multiples, we obtain

inadmissible overcontrol, although the control time will be shortened. Bearing

this in min_ let us select the roots of A(s) so that they are multiples. Then

i

Here and in the future s is the parameter of the Laplace transform.
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A (s) -- (s -i- o.)a :_ sa -1- 3_s2 + 3_s _1_o_,.

r=3% 7"xky=3_ _', oa=ky.

We note that for all real roots of the characteristic polynomial and for

the case of a transfer function with the form

,T,(s)= A (s) '

(14.12)

where A(O) = k , the transient function will not exhibit overcontro!. If for
Y

this constant A(O) = k we assume that all of the roots of A(s) are multiples_
Y

the control time be less than for any other real roots. This situation is the

reason why the roots of the characteristic polynomial are selected as multiples.

Let us take a homogeneous differential equation

(14.13)

For YO _; Y0 = YO = 0 its solution has the form

(14.14)

The graph of function (14.14) is shown in figure 14.13.

represents
This figure also

}1(0 ...... VoOe°' an_ v (0 = :,o_:e-,' oz
, 2 "

The maximum value of velocity y(t) and the zero of acceleration y(t) take

place when tI 2/0. The maximum value of the derivative will be _(tl) =

-YO2qe -2. At this instant of time the deviation is equal to Y(tl)= 5Y0e-2.

Let us assume that from the instant of time t the curve y(t) is the tel-
l

erence curve y (t), which is used to place the missile on the beam axis. Such
r

a curve is shown in figure 14.13 by the double line. Let us find the transform

of this curve_ assuming that time is measured from t . To obtain the transform
1

of the curve we must carry out the Laplace transformation of equation (14.13)
under the following initial conditions
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,j(o)=_,o,, _(o):=-bo, _a ;j(o)=o
[ _/]rl |" _ "go1

s 2 -[- _3_ I s -- 3_ -I- 3_2-- got / Yo,

Since YOZ= Y(tl)' and YOI = - y(t z)_and 201/Yoz= 2/_ _, we drop inde= 'U" _a

obtain the final expression for the transform of the curve which guides the
missile to the beam

s-' I 3-- os-I- -_
V'(s) =: t/o
"r (s 1- _)_

At the same time, when the roots are multiples, the following transform

is obtained from equation (14.11)

(14.16)_Yo /
Y:': (s) :: Yo"

(s -1-_)3

Expression (14.15) represents the Laplace transform of the required or ref-

erence curve Yr(t)without overcontrol. The transform (14.16) corresponds to a
curve with overcontrol, which in this case is quite large. By comparing (14.16)

I 1

..... y()

Figure 14.13. Graphs of function (14.14) with

first and second derivatives.

and (14.15) we can see the terms required in the numerator of (14.16) to

make the curve coincide with the reference curve. Let us see if we can

achieve these terms (14.16) by feeding step signal Yol(t) to the system

through specially selected filters.

The step signal, which has passed through the filter, may be applied to

the input of the system or, e.g., at point a of the scheme shown in figure
14.12. Let us consider the last variation. Let us find the transfer func-

tion of the system which can be applied at point a
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I

I-F .........
(s-l- r) _=

or, when the roots of the characteristic equation are multiples,

•Oa (s)- s
(s -l- oP

(14.17)

The form of the transfer function (14.17) shows that to form the term

9

5

_(_._)-7- Y0 in the transform (14.15) it is sufficient to introduce a step sig-

nal Y01(t) at point a (whose transform is Y0/S through an amplifier with a

gain of 9/5 02 • Furthermore, if the transform of the process in the diagram

in figure 14.12 is to be identical to (14.15), an additional signal must be

introduced at point a. The value of this signal must be

• go /

(14.18)

Because it is impossible to re,_lize a reaction in the form 6(t), we must

be satisfied with a reaction of the step signal Y01(t) through a real dif-

ferentiating network with a transfer function

---- s
Ts-t- I

If, in addition, T << 1/o, the approximation to the reaction of the 6(t) func-

tion will be quite satisfactory.

filters and computer

Figure 14.14. Functional diagram of system

with additional signal dictated by initial
conditions.
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Figure 14.14 shows the functional diagram of a missile control system with

additional reaction produced by a static signal whose magnitude is determined

by the initial conditions. We can see from figure 14.14 that the signals due

to initial conditions YO and YO are transformed by the filters and by the com-

puter into a signal acting on the system. We may call this negative feed-

back, which is determined from the initial conditions.

In this case the following signal is fed at point a

2 $

Yo , 7"_q-1

(14.19)

To generate this signal we must measure YO and YO and operate on them as

indicated by expression (14.19). The operations which are attributed to ex-

pression (14.19) may be carried out by a digital computer aboard the missile.

If the missile does not have a computer of this type, the operations may be

performed by suitable passive filters and amplifiers. When digital computer

techniques are used to generate the step signal, the initial conditions YO

and yo are stored in the memory of the machine during the entire period of

time in which the missile is being placed on the beam. If a digital computer

is not present, the conditions YO and Y0 may be memorized by means of an in-

tegrating device with a shorttime, negative feedback.

Key

0 0

Figure 14.15. Functional diagram andgraphs

which clarify operation of memory-storage de-
vice.

Figure 14.15 shows the schematic diagram of such a memory device and its

principle of operation. When the control system aboard the missile is turned

on, the key key of the integrator is closed for a short period of time _, dur-

ing which the coordinate y(t) remains substantially unchanged. When the key

is closed, the integrator is transformed into a servosystem with a coupling

coefficient k in the feedback loop. If we assume that 3/k < _, the output
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signal YOwill be completely processed by the servosystem during the time _ and

can be picked off from its output sensor. After the key key is open, this sig-

nal, as before, will be read as a constant value or as Yol(t) of this sensor.

Wehave considered the application of feedback, determined by the initial
conditions in the linear system which places the missile on the beam. It is
not difficult to apply these feedbacks in a nonlinear system where the rela-
tion between deviation y and signal _ is a nonlinear function, shown in figure

14.10. In this case it is necessary to turn the system on when y passes
s

through a maximumand begins to decrease. Until this instant of time the mis-
sile is not controlled_ and aboard the missile only coordinate y is controlled
according to quantity Ysand approach velocity #. Instead of measuring velocity

#, we measure angle @between the longitudinal axis of the missile and the beam
axis. This angle can be measuredby meansof a position gyro oriented along
the beamaxis.

Section 14.6. Missile Guidance by Meansof Radar Stations and Radio
Navigation Systems

Surface radar stations with circular scan and equipped with computers
may be used to guide surface-to-surface and surface-to-air missiles with wings,
and also to guide interceptor-pursuit planes. Systems of radio navigation may
be used to guide surface-to-surface missiles.

Radar stations can determine the coordinates of the target as well as the
coordinates of the missile. As we have already pointed out in section 14.1,
in this case computers maybe used to realize any laws or methods of guiding
missiles to their target. However, in such missile control systems there is
one significant feature: radar stations measurethe coordinates by sampling,
rather than continuously. During each revolution of the antenna system the
coordinates of the missile or the target are obtained once in the form of
pulses, whose duration is insignificant comparedwith the period of rotation
of antenna T. This discontinuity in the feedingof information concerning
the coordinates of the target and the missile is the most significant fea-
ture in the use of radar stations with circular scan for missile guidance.
instead of continuous missile guidance systems, we achieve sampled-data sys-
tems.

To clarify the operation of sampled-data guidance systems we consider
first the guidance of surface-to-surface missiles.

1. TheGuidance of Surface-to-Surface WingedMissiles. To guide mis-
siles of this type it is necessary to know the mutual coordinates of the
target and the tracking station.
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Let us place the radar at the origin of a polar coordinate system fixed

with respect to Earth. It is most convenient to use a polar system of coordi-

nates when a radar station is used_ because the radar station measures the

range L and the bearing _ to the missile or the target. Figure 14.16 shows

the trajectory of a missile. Due to the rotation of the antenna with a fre-

quency 1/Tcp , the coordinates of the range and the azimuth are measured and

are stored for the entire period of rotation of the antenna Tcp As a result,

= _(t) as well as L = L(t) become step functions consisting of a sequence of

rectangular pulses.

To guide the missile to a surface target, it is necessary to assign a

trajectory which passes through the target and through the launching site of

the missile. To hold the missile on the specified trajectory, we must measure

the deviations c from this trajectory and transmit them as signals to the mis-

sile.

radar station ___ 0__L-_

a b

Figure 14.16. System with circular scanning used

for guidance (a) and graphs showing range and bear-

ing of missile (b).

Any rectilinear trajectory is completely determined by the length of the

perpendicular L 0 to this trajectory and the polar angle of this perpendicular

_0' or by the approach angle of this trajectory _0 = _0 - _/2 (fig. 14.17).

Figure 14.17 shows that the lateral deviation from the assigned trajectory

is equal to

= I.o- si, - %). (14.20)

The computer at the radar station computes the deviation ¢ for each rev-

olution of the antenna. If we compute the values of ¢ and fix ¢ for a period

of one antenna revolution, we obtain the step function ¢ = c[t]. By sending

the signals s = c[t] to the missile, we obtain a sampled-data stabilization

of the missile along the assigned trajectory.
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T

I L

Figure 14.17. Relative position of missile and

assigned trajectory.

The functional diagram of a sampled-data missile control system for guiding

the missile along an assigned trajectory is shown in figure 14.18. The func-

tional diagram is constructed for a winged missile, when the slip is equal to

zero and when the missile reacts instantaneously to commands from the channel

controlling its tilt. To achieve functional stability, fixed feedback is used

for the deviation of the missile's course angle _ from the course of the tra-

jectory _ . The signal _ is measuredby a position gyroscope oriented along
0

the assigned trajectory. The orientation of the gyroscope is achieved by a

special command from the ground when the trajectory is assigned. 1 The sampling

pulse tilt .

member , angle I_,_ _.

• " _

Figure 14.18. Functional diagram for sampled-data

missile control system; sc = shaping circuit.

of the deviation e is characterized by a pulse element which generates the 8(t)

functions. In this case the intensity of the 6(t) function is equal to the

value of the error c = x(t) -y at the nth instant of tim% i.e.,

t_ i 6(l--Iz?',,)dl

tz_ _

Following this_ a succession of 8(t) functions is fed to the shaping

circuit of the first order. This shaping circuit transforms each 5(t) pulse

into a rectangular pulse, whose height is equal to ¢ . The 8(t) pulse element
n

1For this orientation the missile must contain a aourse system.
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and the shaping circuit simulate the radar and the computer quite accurately

in measuring the deviation or the error e = -y (when x(t) = 0). However, the

delay T << T n is not taken into account. This delay is due to the necessity

of reducing the measured _ and L and computing ¢ = -y by means of equation

(14.20). The computation time is of the order of a fraction of a second,

while T --the period of revolution of the antenna--may be 4-10 sec. Be-
n

cause each 8(t) pulse is transformed by the shaping circuit into a rectangular

pulse, the Laplace transform of a rectangular pulse of unit height will also
oe transfer function of the shaping circuit. 1 The transform of the rectangu-

lar pulse is equal to the difference between the two step functions l(t) which

are displaced by Tn, i.e.,

1v¢(s) --= 1-- ;-,r = __ l . }L
S Z S

where z:=esrn.
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The transfer function of all continuous members and the transfer function

of the shaping circuit, form the transfer function of the continuous part of

the system W(p). In this case

k (14.2i)
W(s)_=_--I .--.

z s . (rq, s-l- 1) s '

where

V

k----_k' V[- '-],secJ T*=;-g_:_ -[see-I,, "

The continuous part with the transfer function W(s) and the 8(t) pulse

element (pe) form a single loop sampled-data automatic control system (fig.

14.19). To analyze this system, it is rational to transform the continuous

transform function W(s) with an argument s = _ ± jw into a discrete trans-

fer function W(z) with an argument z = esTn. This transformation may be ac-

complished by means of corresponding tables for the transfer functions of

elementary members. 2 When the transfer function (14.21) is broken down into

elementary fractions or members, it takes the form of

re' (s) = kr.,_. ___:-! [__ I -tZ S

1 . I i. I ]
r, -i; -, ]. (14.22)s-|-l/T,

i
The construction of this circuit can be analogous to that of a memory cell

shown in figure 14.15.
2
G. S. Pospelov, Sampled-data Control Systems, Collected Articles "Automatic

Control and Computer Engineering," Mashgiz, No. 33 1960.
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where

Wehave the following relations

l _ z |

8 Z--|' $2

2Tn I z
and i_

(z-- 1)2 s-k 117"¢ z--a

By using these relationships we obtain

iV [z] = X= (x, -t-a -- l) z -I- l - a 0_ -I- 1)
z" -- (a -I- 1) z -I- a '

(14.23)

where

_kI 7'..
7"¢ ' ),_ = kT_.

The transfer function (14.23) is the transfer function of an open loop

system. To obtain the transfer function for a closed,loop system we use the

relationship between these functions_whichis analogous to the corresponding

expression for continuous systems

[z]_ _vr_i_ _,_+do (14.24)
1 -t- iV [z] " z_ -I- blz -t- bo '

where

di---- (>'l-I a.---1) ?'2,

bo =-_ do -t a,

do _= [1 -- a (XI -I- l)l ?'2,

b I =: d I -- (a -I- 1).

The denominator of the transfer function (14.24) is the characteristic

equation of the difference equation which describes the behavior of the out-

put coordinate y at discrete points t= O; 2Tn3... _ nT n. The homogeneous equa-

tion itself in terms of fiflite differences has the form

Y,._z.:-k blY_+l-_"bog_ = O, (14.25)

where

u,,= v (0 I,_.%.

Equation (14.25) is a recurrent relationship with which we can compute

all the values of Yn* beginning with Y2' from the assigned initial conditions

Y0 and Yl"

In order that the system be stable, i.e., in order that Yn _ 0 for n _ %

it is necessary and sufficient thab the modulus of the roots of characteristic

equation
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z_ -[-b_z + bo := 0

be less than unity. It is obvious that the roots and their distribution in a

unit circle on plane z will determine the nature of the transient processes.

The transfer function (14.24), as in the case of continuous systems, is

the transform I of the system's pulse reaction. To obtain the pulse reaction

we expand @(z) in power series of z-l 2

eo

\,* =: f,,z-"=
.. n=:O n=O

(14.26)

As we can see from expression (14.26) the coefficients of the series,

which in the present case are known as the weighting coefficients, represent

the ordinates of the system's pulse reaction at points t = O_ T _ 2T , 3T ...j
n n n

nT .
n

To obtain the transient function we must expand the expression l_[z] z
z - 1

in a series

z--I
n=-O

Here H is the ordinate of the transient function (n = O, i_ 2, .... ).
n

The transient function H(t) of this system is a continuous function. By

using this method it is possible to determine the values of this function at dis-

crete points t= 0, Tn, 2Tn... , nT n Ifig. 14.20). Requirements imposed on the

transient function are analogous to requirements imposed on continuous tran_

sient functions_ when a beam is used for guidance.

These methods for using radar to guide surface-to-surface missiles may

be used in their general form to guide this class of missiles by various

radio navigation systems. By using a radio navigation system and a computer,

which in this case is located aboard the missile, the trajectory passing

through the target is assigned. To maintain the missile on the assigned tra-

jectory, signals of deviation of the missile's center of gravity from the

1
The z-transform or a discrete transform.

2
The series expansion may be achieved by a successive division of the numerator

_(z) by the denominator.
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assigned trajectory are used. Theseare obtained by meansof the radio naviga-
tion system. The methods of obtaining control signals are considered in
Chapter 4.

2. The Guidance of a Surface-to-Surface WingedMissile and of Interceptor
Fighters by Meansof Radar. The computer of the surface radar permits us to
realize any method of guiding a missile. Let us consider the method of
parallel approach. During each revolution of the antenna the radar measures
the bearing of missile _ , the range to missile L , the bearing of the target

c c

_T and the range to the target LT (fig. 14.2_I). From these data it is possible

to determine the position of the target and of the missile in the assigned
system of coordinates, the velocity vectors of the target and of the missile,
to compute the distance between the target and the missile, to determine the
value of the angular velocity of the line joining the missile and the target,
etc.

pe pe pe

Figure 14.19. Schematic diagram of
single_oop sampled-data automatic
control system; pe = pulse element.

I
0_

Figure 14.20. Discrete value

of transfer function.

L T

radar station

Figure 14.21. Geometric relationships when

missile is guided by surface radar.

Finally, by making use of expression (13.46) we can determine the in-

dicated miss y. Like the deviation from the trajectory y in the preceding

case, the miss is determined once during each revolution of antenna T n and
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remains fixed for the entire period. The indicated miss, which may be obtained,
will be represented in the form of the samestep curve as q0and L in figure
14.16.

Now let us assume that a control signal is generated in accordance with

expression (13.58) and is transmitted to the missile along the guidance link.

The signal _(t) = - ky/kc X will also represent a succession of rectangular

pulses. Since the relation between the miss and the angle of attack is given

by expression (13.56), we obtain a sampled-data control system of the first

order. The functional diagram of this system is shown in figure 14.22. The

transfer function of the continuous part in this case will have the form

V(,_ z--I k.... .

In the same way the transfer function of the argument z must be written
in the form

kT.=--.

From this it follows that the transfer function of the closed loop system is

__ kT n i -- a

t'_ [Z] z--(l--kT n) = z--a (14.28)

where i -kT = a.
n

The system is stable and the miss decreases if is < 1. The equation in

terms of finite differences, corresponding to the transfer function, has the
form

xn'_ 1 -- (/zn --=--0

or

_.+l==-az. • (14.29)

If the initial miss was XO ,
then

X 1 aXO, X2 aM I gL" O,

.zn"= (lnXo

n = (0. 1, 2,...,co).
(14.30)

The last expression is the solution of the difference equation (14.29), be-

cause it determines the valuesof the miss during the nth antenna rotation in

terms of the initial miss and the system parameter a= l-kT n. From this expression

we can also see that Xnl_0 only if lai <I. In this case the miss decreases

more rapidly as la i becomes smaller. Expression (14.3 O) shows that the miss

decreases according to the law of geometric progression. This means that
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x=O pe _

Figure 14.22. Functional diagram of

sampled-data control system of first

order.

the envelope of the miss ordinates will be an exponential curve with an ex-

ponent -[Ii__5 As we can see from the functional diagram shown in figure
Tn

14.22, rectangular pulses are fed to the input of the integrating element.

This means that, within the limits of Tn, the output of the integrating ele-

ment or the miss X will vary according to a linear law.

a=o
_/ a2<al

I 2 J 0 5 6 7-_.-T¢

Figure 14.23. Graph showing varia-

tion and miss as function of posi-

tive values of parameter a less

than unity.

x

yff ,

Figure 14.24. Variation in miss

for negative values of parameter

Figure 14.23 shows the graphs for the variation in X for two positive

values of G less than unity. As we have already mentioned, as G decreases,

the miss X decreases more rapidly. From the expression for G:l-kTn, we can

see that by selecting the quantity k we can make G = 0. In this case miss

X will become equal to zero during one period of recurrence T (the case G = 0
n

in figure 14.23). " However, when the values of G is equal to zero or close to

zero, there will be an unfavorable reaction of the system to noise and inter-

ference. Therefore, these values of a cannot always be recommended. Nega-

tive values of _ are also not recommended. According to equation (14.30) a

negative _ (less than unity) leads to a variation in the miss having the

form of damped oscillations. The frequency of these oscillations is equal

to 1/2 Tn. The graph showing the variation in the miss for negative values

of _ is shown in figure 14.24.
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Equation (14.29) is obtained through the formal application of the theory

of sampled-data control systems. The same expression may be obtained directly.

Indeed, instead of the differential equation (13.56) let us write the equation

in terms of the finite differences corresponding in essence to the sampled-

data control of the missile

T_ _ %' (14.31)

where

mx a = Xtrt_ I -- xn;

L is the range at the instant of time t = n T ; and
en n n

is the angle of

attack at the time instant t = nT n.

Let us require that

q'n _ _ Let"_xa" (14.32)

Then from equation (14.31) we obtain

Az_ .1- kT,,z_ = O, 33)

where

k /_ykv

Tv

Since AX = Xnn + 1 - Xn we go from equation (14.33) to equation (14.29).

The use of a computer to obtain the miss involves a rather complex opera-

tion. We shall limit ourselves to the calculation of @. In addition, as we

have pointed out in Chapter 13, the variation of the angle of attack as a func-

tion of @ is somewhat more advantageous than its variation as a function of

miss. The angular velocity @ may be determined in terms of the increment in

the angle _ during one rotation of the antenna, i.e._

_n ....

7'n 7',_

The angle _ for each revolution of the antenna is computed by means of a

computer using the equation .....

?_ = arctg (14.35)
LT_°S _ Tn- I._,, cos ?c_ '

where Lcn, LTn is the range to the missile and the target; and _cn_ _Tn are

the bearings of the missile and the target.
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Nowlet us require that _n= -i_$qn" In this case, by considering the rela-

tion between the miss X and _0n and equation (14.31), we obtain an equation in
n

terms of finite differences which has the form

or

AT.,,-I k
T n lo -- nT.

Equation (14.36) as well as the differential equation (13.67) are equa-

tions with variable coefficients. The solution of (14.36) may be represented

in the form

n--I
k (14.37)

Table 14.1 shows the results of the calculations carried out by means of

equation (14.37) for

• loiT n=9.5, k=6 and k=2.
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TAB_ 14.1. RESULTS OF COMPUtinG MISS BY MEANS
OF EQUATION (14.37).

k:=6 .. k=2

n l 6 6 2 .

9,5--i 9.5--i 9.5--/ r 9.5--i

0
1

2

3
,I

5
6

7

8
9

10

0.63
0.706

0.8

O, 925

1.09
1.33

1.72
2.,I
,1

12

0.29t
0.2

0,075

--0.0_

--0.33
--0.72

--I .4
--3.0
--ll

1

0,37
O. 103
0.0216
O. 102.10 -2.

-- O. t.16.10 -a
O. q8.10-'_

--0.316. IO-.L
O, 18,-3.10 -t

--0.1,t5.10 -a

O. 18. I0 -=

• 0.210 0.7_;f)
0.235 0.765

0,267 0.733

0.308 0.692
0.364 0.636

0.,t,t5 0.555

0.572 0.,t28
"0.8 0.2

1.33 --0.33 '
4 " --3

1

O. 790

O. 605
O. ,t.t2

0.305

O, 195
O. 109

0.0,t65
0.93.10 -2

--0.307.10 -2

0,92. lO -i

If in a continuous system for any value of k the initial miss X given by

(13.82) always becomes equal to zero when 1 = O, in a sampled-data system this
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is not observed. The miss cannot becomeequal to zero nor can it change its
sign in the region of the target. I Thus, the impact accuracy in the case of
sampled-data control is always less than in the case of continuous control.

k . becomesequal to 1.O, the miss be-iIn a particular case when for somen lo/Tn_--i

ginning with this interval becomes equal to zero.
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CHAPTER 15. THE DYNAMICS OF MISSILES WITH SELF-CONTAINED

GUIDANCE SYSTEMS
/489

Section 15.1. Control and Guidance of Airplane Missiles by Means

of Inertial Systems

i. Rectilinear Flight to the Target. In guiding airplane-missiles to a

surface target it is necessary to know either the geographic coordinates of

the target or the range and bearing of the target with respect to the launch-

ing site. Sometimes another reference point is used instead of the launching

point and the position and velocit_f of the missile are measured with respect

to this point. When the range and target bearing are given, the flight tra-

jectory may be taken as the arc of the great circle which takes into account

the rotation of the Earth. One of the accelerometers A is oriented along
x

the arc of the great circle, while the second accelerometer A is normal to
Z

the plane of the great circle.

N

trajectory of

airplane, missile

S

Figure 15.1. Flight trajectory of airplane-missile

along arc of great circle.

The range control (15.1) is quite simple. The output of the second in-

tegrator of the inertial system records the travelled path L. This travel

path is compared with the given programed value of the target range L3, which

is stored beforehand aboard the rocket in the programing mechanism or in a

computer. When x becomes equal to L3, the airplane-missile goes into a dive

towards the target and if there is a homing system, a signal turns it on. With
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this type of range control it becomes necessary to stabilize the trajectory with

respect to lateral motion.

The coordinate z (fig. 15.1) is maintained at zero I during the entire flight /490

flight period. The functional diagram of the inertial stabilization system for

the airplane-missile is shown in figure 15.2. It is further assumed that the

airplane-missile flies without slipping, and that the transient processes assoc-

iated with the tilt may be neglected. The functional diagram of an inertial sys-

tem shown in figure 15.2 is equivalent to the functional diagram shown in figure

5.27, because z/R = _ and _ /R = _ Accelerometer A is subjected to the total
c g g

lateral acceleration _ due to the tilting of the missile g_ and due to the wind

w, as well as due to the component of gravity gz/R. To achieve stabilization

controlled member

rtial systems z and i
•. F-- .FE .... ,.......

• t r.-IR "_ 1st integrator ,
r;,--I • I LJ t' I ^ _ ,
lZ_ ' a _ ,o, I-7-1 :_llb"l i

' I I _I ] 2nd integrator
• _- I _Fil z_.l

• .. _ 6 I I....I ..... _ 6 I

" L " PLZJ.41,
I

Figure 15.2. Functional diagram of inertial sta-

bilization system for airplane-missile.

along the trajectory, the channel for controlling the tilt receives the signals

z = z + _ and _ = _ + _, where z and g are the true deviations of the rocket
g g

from the assigned trajectory and the rate of this deviation, z and z are the

g g

same quantities, but measured by the inertial system, and _, _ are the errors

in measuring the lateral velocity and the lateral displacement. These errors

were considered in Chapter 5. For an undamped and uncompensated stable plat-

form errors _and _ contain harmonic components with the Schuler period. Due

iAs we shall show, this is not absolutely necessary if it becomes desirable to

maneuver the rocket.
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to the drift of the platform with constant velocity, error _ will contain a com-

ponent which increases linearly. Let us assume that not all errors of the in-

ertial system are taken into account by errors _ and 4. Specifically, these

errors are associated with the threshold values of the accelerometers and of the

integrators and with the deviations in the transfer characteristics of integrators

from ideal characteristics with a transfer function i/p. We note that in the

controlled member the members i/p are always ideal because they characterize

the kinematic relation between acceleration and velocity and also between veloc-

ity and the coordinate. In addition to measuring accelerations, the basic prob-

lem of inertial systems is to simulate the ideal members 1/p of the controlled

member as accurately as possible.

In the functionaldiagram shown in figure 15.2 the restriction of the tilt

is shown in the tilt control signal circuit. For small deviations from a given

trajectory and in the proportionality zone for the tilt limiter we have the

following system of equations

z --_ VOb_- ]Yv';.

• rob=

_' = k_ (z_ -- zg) -- k_ Zg;

+

(15.z)

where V is the air speed of the rocket which is assumed to be constant; W is

the wind velocity normal to the trajectory; z = z (t) is the signal from the
3 3

programing mechanism to displacing the rocket from its trajectory, if this is

necessary. If it is not necessary, then z = O, and e is the angle between
3 b

the given trajectory and the air velocity vector of the airplane.

If we eliminate V and 0 from the first two equations we obtain an ex-
b

pression for the acceleration

::-- + (15.2)

which is the one _ealized in the f_mct_onal diagram shown in figure 15.2. The

construction of a functional diagram which takes into account expression

(15.2) is valid only when the inertial system is placed into operation before

the missile is launched. Only in this case is perturbation W applied in

front of the second integrator of the member (see system (15.1), first equa-

tion), equivalent to perturbation ,': = dW/dt, applied in front of the first

integrator of the member, as sho_ in figure 15.2. If, for example, the in-

ertial system is turned on after launching, which takes place when there is a /492
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constant side wind, the transformation of perturbation W into W is incorrect,
because in this case the accelerometer of the inertial system will not sense
any acceleration associated with the uniform motion of the air mass.

The equation (15.1) is reduced to one equation of the second order in terms
of the coordinate z

"zq- aoz =,uz+ +  P]-7 ao' - q, (15.3)

where

• a o ---=gk+ and al gki.

The parameters k and k may be selected by proceeding from the assigned
z

damping coefficient _ = al/2_and_ control time tpfcontrol_._j When we have

an optimum damping coefficient _ =_the control time t = _/_ = _/_/_,
P O

from which it follows that

k r___" 57,.._3rdegree tilt I •

.. t_. I meter I

The time t is usually 20-60 sec. It is difficult to realize a shorter
P

control time due to nonlinearity and limitations in the automatic pilot. When

the damping coefficient is _ = _2/2 the portion of the signal due to the deriva-

tive is equal to

1 Fdegree tiltl .
.k,_ =25.8 t--_- L" YEffe_" .1

Let us consider the reaction of the system to the perturbation of the func-

tion in the right side of equation (15.3). When Z = Z 1 (t), where Z =
3 30 30

const, the flight trajectory will be displaced laterally by z (15.3a). If fuel
0

supply permits, the signal z3(t ) may be used to produce a counter-zenith maneu-

ver over some region of the trajectory. The maneuver will be most effective in

the case when z (t) is a random function of time. A maneuver away from the
3

zenith achieved by means of generating z (t) will have no effect on the opera-

3

tion of the range channel of the inertial system, because the x-axis of this

system is oriented towards the target. When the airplane-missile at the time
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t encounters a side wind with constant velocity, we obtain the following equa-

l 1

tion from (15.3)

z + m'z+ aoz = Wo_,(0,
(15.4)

where W is the velocity of the side wind 6(I) =-_ I(I).
0 dl.

Due to the action of pulse 6(t) the airplane-missile first deviates and

then again returns to the assigned trajectory (fig. 15.3b). The maximum ejec-

tion from the trajectory will be less when the coefficients k and k. are
Z Z

greater, i.e., the smaller the control time t during reaction to the step sig-
P

nal l(t). With equation (15.3) we can determine the reaction of the missile

Reaction to Reaction to

Z I IWo6(t) • .

[//:: " I /"_-tmaximall .,.../'.,

g _ 0 g

a b c

Figure 15.3. Curves showing reaction of system to

perturbing function.

to errors _ and _, which for the system under consideration are the perturbing

functions; as we have already pointed out, errors _ and _ contain a sinusoidal

component with the angular Schuler frequency'S/Rand a constant and linearly in-

creasing component. The angular frequency of the natural oscillations of the

airplane-missile during the control period, for example_ during 31.4 sec is

equal to 0.1 1/sec, while the Schuler angular frequency is equal to 0.0393 1/sec.

Therefore, the trajectory of the airplane-missile will actually follow the laws

for the variation in errors _ and _ without distortion (fig. 15.3c). As we can

see, the drift of the stable platform will produce a gradual deviation of the

airplane-missile from the assigned flight trajectory. This deviation may be

prevented only by compensating the inertial system.

1

In the equatio% time tI is taken as the beginning of the reading, i.e., it is

assumed that tI = O.
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2. Introducing Initial Conditions. Flight Along a Programed Trajectory.

The problem of introducing initial conditions occurs if the airplane-missile is

not on the assigned trajectory when the control system is turned on, or if the

trajectory itself must be suddenly changed. These situations may occur when an

inertial guidance system is used in the surface-to-air missiles or when the air-

plane-missiles are not properly aimed.

The initial conditions may be introduced by means of additional sources of

information (radar, radio navigational or others). Let us assume, for example,

that the missile was directed to target TI, along a straight line PIT1 (fig.15.4).

Let us also assume that the missile was tracked from the control point continu-

ously or episodically, for example, by means of radar. At the moment when the

missile is at point PI a decision is made to aim the missile to target T2 along

the straight line P2T2 . With respect to the straight line P2T2 the missile h_s

the initial conditions Z0 and Z0 =V k, where k is the angle between the trajec-

tories PITI and P2T2 . (In this example angle k is small; therefore the same

system of coordinates may be used to measure z for both trajectories.) The

values of Z0 and ZO must be determined by external sources of information and

introduced to the input of the second and the input of the first integrator.

T1

P2 Z

•p1z _,j'0=vp

Figure 15.4 Flight trajectory of missile when it is over-

aimed.

Figure 15.5

• T

Z

Broken programed trajectory of missile.

Before introducing the initial conditions, the integrator should be discon-

nected from the accelerometer and the automatic pilot and should be placed in

the zero position, i.e., the accumulated readings at the output should be



dropped. After the initial conditions are introduced, the entire system is
again turned on. Similar operations must be carried out with the system record-
ing the distance to the target. The accuracy which is achieved in determining
the initial conditions by external sources of information determines the accu-
racy of the new specified trajectory and the accuracy of pursuing the new target.

The introduction of initial conditions is also necessary whenflight must
take place along a broken programed trajectory (fig. 15.5). Let us assumethat
the missile must travel from POalong the broken trajectory PoPIP2T . The accel-

erometers are oriented in the rectilinear system of coordinates along axes x and
y. Consequently the inertial system makes it possible _o obtain the signals x_y
and _,#. To realize the flight along the straight line, which does not coincide
with the coordinate axes x and y, a computer is required. If the straight line
along which the missile must movepasses through the origin of the coordinates,
its position is determined completely by angle q>l" The traveled path L and the

velocity V along the straight line are computed by means of equations

(15.5)

(15.6)

The deviation from the assigned trajectory z and its velocity are also de-

termined by a computer by means of equations
/495

(15.7)

(15.8)

The signals z and _ (more precisely Zg and _g) are introduced into the

channel of lateral control for stabilizingthe motion of the center of gravity.

Furthermore, when the signal L achieves a value assigned by the programing

device (or stored in the memory unit of the computer) determined by the length

of segment PoP1 , a transition to the new trajectory PIP2 must take place. In

this case it is rational to zero both of the second integrators (this is equiva-

lent to moving the coordinates to point P1). Flight along the new straight line

PIP2 will commence with the initial conditions z O= 0 and_ 0= Vcontac t point 1

sin(_l -_2), where Vcontac t point 1 is the velocity computed by means of equa-

tion (15.6) at point Pl" From the known value z O and _2 the values of Y0 and

are computed and introduced at the inputs of the first integrators. When the

missile arrives at the point P2, all operations are repeated.
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Figure 15.6.

P0

P2

Actual and programedtrajectory of missile.

The intermediate points Pi,P2.... maybe situated in regions where the

position of the missile maybe refined by meansof other sources of information
(surface or astronomical reference points, etc.). In this case the trajectory
at each new bend should be assigned by taking into account the actual position
of She missile (fig. 15.6).

Section 15.2. The Flight Trajectory of a Short RangeBallistic Rocket
(L = 500- lO00 km)

For this range it is not necessary to take into account the curvature of
the Earth, and it is permissible to consider the vector of the acceleration due
to gravity to be constant. The flight trajectory of a ballistic rocket is
divided into active and passive regions (fig. 15.7). At the end of the active
region the guidance system and the engine have provided the rocket with the
velocity Va (subscript a =,burnout) and a flight direction ea. Whenthe velocity

is Va and the slope angle is ea the engine is turned off and the passive region

starts. Even for a short range rocket we mayassumethat the passive region lies
outside the Earth's atmosphere. At the end of the passive region the rocket
again returns into the atmosphere. It is rational to subdivide the passive re-
gion into the ballistic region with a range Lb(ballistic) and terminal region with

a range LK(terminal ) . Along the ballistic region the only force which acts on /496

the rocket is the force due to Earth's gravity. Therefore, the equations of

motion of a rocket along the balli_tic region will have the following form if a

rectilinear system of coordinates x,y is used

(15.9)
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Figure 15.7. Flight trajectory of ballistic rocket;
scripts a = burnout, b = ballistic, K = terminal.

sub-

For initial conditions x0 = YO= 0

xo = V, cosO,, Vo = V, sin 0..

The solution of equation (15.19) gives us

x = (V. cos OOt,

y = (V, sin 0_)t --
gt2 "

By eliminating time we obtain an equation for a parabolic trajectory

g = x tg O_-- gx=
•2V_ cost 0a

(15.10)

and its parameters of maximum altitude

V_sin2Oa
Hbra = .

2g (15.11)

and range

Lb= _V_ sin20 v
g

(i5.12)
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The maximumrange Lbm is obtained when 8a= 45°. Therefore, for a baliis_ic /497

missile 8a is usually close to 45 degrees. If ea= 45 ° , then Hbm and Lbm are as-

sociated by the relation

Hbm = Lbm (15.13)

The basic component of the rocket's range is the ballistic range, so that

errors in the ballistic range are most significant. As we can see from equation

(15.12), to obtain the desired range it is necessary to maintain definite values

of velocity and of the angle ea. An error in velocity AV and an error in slope

A8 will produce an error in range ALb. If we take into account the possible

errors, equation (15.12) takes the form

(Lbm +ALbm) = 6', 'F AV), . sin 2 (%, --}- AO). (i5 .i4)
g

If we limit ourselves to terms which are infinitesimals of the first order

in the right side of equation (15,14), we obtain

AL 2 aV -F 2ctg2_AO< 1- v-:- 57.3 (15.15)

As we can see from equation (15.15), an error in the angle A8 (by 2- 3° ) in

the case of an optimum trajectory (Sa= 45 °) produces practically no error in the

range because qtg90 ° = 0. The range error is determined completely by the flight
• [ •

speed error. The relative range error is equal to twxce the relatlve velocity

error. Thus, when a missile is fired over a distance of i000 km, a velocity

error equal to i percent produces a miss of 20 km.

It is necessary to point out that, although the error in the angle does not

lead to practical errors in the ballistic range Lb, nevertheless_ due to the dis-

placement of the end of the active region and the beginning of the ballistic re-

gion the angular error may produce a noticeable range miss component. When

ea _ 45 ° , this miss is equal to

AL = 2 fl. AOo.
57.3 (t5.16)

where H h is the altitude of the sl_pe of the active region in km. Thus, for
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example, an error of one degree in &e for H _ 30 km gives a miss of approxi-

mately 1 km.

For very short ranges the assumption that the passive region begins outside /498

the atmosphere may be incorrect. The validity of this proposition may be veri-

fied, if we know the values of H a and Va by evaluating the magnitudes of the

aerodynamic forces. The aerodynamic forces may be evaluated from the coeffi-

cients cx and Cy, from the dimensions of the rocket and from the parameters of

the atmosphere at the altitude H a .

Figures 8.8 and 8. 9 show the characteristics Cy=Cy(_,M) and Cx=Cx(_,M), re-

ferred to the maximum cross section of the rocket. Table 8.5 presents data on

the atmosphere up to an altitude of lO0 km.

Section 15.3. Flight Trajectories of Long-range Ballistic Rockets (L>I000 km)

For long-range flights it is not possible to neglect the Earth's curvature

or to consider the center of gravity as constant and independent of altitude.

Before obtaining an equation of motion for the rocket along the passive region

let us consider two extreme cases of rocket flight: (1) a flight with an angle

aa=O; (2) flight with an angle ea=_/2. For the first case we find the value of

velocity Va, for which the rocket will orbit the Earth along a circular orbit.

During flight along a circular orbit the centrifugal force tends to move the

rocket away from the Earth, but it is balanced out by the force of gravity,
i.e.,

• i/2 •

m " = m_. (15.17)
Ro

From equality (15.17) we determine the value of velocity Va=VKI , for which

flight along an orbit close to the Earth is achieved

V,,,'-- ]/Rogo ]/6370000.9.81M_-7912_ 8 km/sec.

The velocity VKI is known as the first cosmic velocity.

Thus, when the first cosmic velocity is achieved the rocket becomes an

Earth satellite with a circular orbit. The period of revolution of this satel-

lite around the Earth will be equal to

V,, _/-_-_ ]/ go 84.5 min.
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As we can see, the satellite orbits the Earth with a period equal to the period

of oscillations of the Schuler pendulum (section 5.9). For _he second case let

us determine the altitude reached by a rocket whose initial velocity is V a.

We write the expression for tl:e variation in the kinetic energy of a rocket

mV2 mV_ a,+fH .

2 -- ] FdR, (15.18)

where R = R0 + H is the distance f±'om the rocket to the center of the Earth;

m.M

F =k R2 is the force attracting the rocket towards the Earth; M is the mass

of the Earth; and k is the gravitational constant.

At the Earth F=mg0, consequently, kM=g0Rg. From this we obtain other ex-

pressions

for the force of attraction

F = mgo -_-. (15.19)

for the Earth's acceleration

Substituting equality (15.19) into (15.18)and integrating we find

• °

At the maximum altitude velocity V becomes zero. Assuming that in equation

(15.20) V=0, we find the" maximum altitude achieved by the rocket

<,, ..
,)
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When --V_ << 2g0 we obtain the well-known equation of Galileo
Ro

2g° (15.22)

When V] _--2g0R 0 or when

V_ _ V_2 = 1/2g_Ro (15.23)

altitude Hm becomes infinite, the rocket overcomes the Earth's gravity and flies

into cosmic space. The velocity VK2 is called the second cosmic velocity. The

second cosmic velocity is greater _han the first cosmic velocity by a factor_-2

and is equal to 11180 m/sec_ll km/sec. Both cosmic velocities are constants of

our planet. The equations of motion of a long range rocket may be formulated

conveniently by using polar coordinates R,_ with their origin at the center of

the Earth (15.8). To derive the equations of the rocket trajectory, we make use

of expression (15.20) and replace R0+H by R and R0 by R_, where R_>R O. As a re-
sult we obtain expression

JR0V"-- V_ -- 2g,Ro R' [Ro>]• " (15.a4)

/ oo

71"1

Figure 15.8. Flight trajectory of ballistic missile in polar
coordinates.
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In addition, we use Kepler's law

_:_=c .... (15.25)

where C= const.

From the initial conditions (t=0) R=R 1 and _0 -V'ccs0', .R_. ' we find the value of

the constant in equation (15.25): C=RiVaCOS 0a . Therefore,

R2,'_= R_V,cosO,--C. (15.26)

We write the value for the square of the velocity V in polar coordinates

By means of equation (15.26) we eliminate _ from (15.27)

v, = (Ro)_ _os0, --Z _ ÷ _ • (15.28)

Finally, by eliminating V from expressions (15.24) and (15.28), we obtain a dif-

ferential equation for the trajectory of the rocket in polar coordinates.

After separation of variables this equation takes the form

d? =
CdR

a, _ v_- _' J_:+ (15._)
.o R

By introducing a new variable 9=-_
the form R C

equation (15.29) is reduced _o

where

d_ ----
]f_ ys ' "

2goRg 2 4go Ro

Rh k2

(15.3o)
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Integration of equation (15.30 ) gives us

¢? -- % = arc cos #_--- arccos -u° . (1 5 31.)
"' G •

In the specific ease when cos 0a:l and YO=a the second term in (15.31) becomes
zero and in this case

R= P
l+ ¢ cos (9-_°) ' (15.32)

where
; l'2

RoVa

_o_

| "_
RoV a -

and ¢ = I.

Equation (15.32) is the e'quation of conic sections in polar coordinates

with eccentricity ¢. In the more general case, by using an equation for the sum

of the arc cosines, we obtain from expression (15.31)

/ ".1/ •a'- + 1 - ,7 / 1 -- %_- -_-cos (? -- _o)-

Returning to the initial variable,

from this equality

we also obtain an equation for conic sections

R ---- P

l:F-cos(9--?0_'?0_' (15.33)

where

% -----arc tg
_j

I 2 2 q

(_0) Va COS-Oa

p =
goR_

0.5V_ sin 20a

= arc lg -

,Io v.2_oc-o.- eR.___
R_

gong +.v._(R_)'_o_,0,,,.
goRo
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Z II ::_ t'

Figure 15.9. Trajectory of ballistic rocket for different

burnout velocities.

l
_R 0 is theIf the rocket is launched from the surface of the Earth, then R0

radius of the Earth. In this case we obtain the following expressions for p
and

V: cos _ 0a

P=--,
.go

O, 5V_sin _0a :'
,_ --- arc tg _-- ;.

V 4 co$2 0a

got_o 2 2goRo
/ 2 V_cos 20_

•|/ V_I "

(15.34)

Depending on the value of eccentricity ¢, various rocket trajectories are

formed. For c <l when Va<VK2 , the rocket trajectory will be an ellipse. For

e = 1 when Va=VK2 the rocket trajectory will be a parabola. 1 For ¢>1 when

Va>VK2 , the rocket trajectory is a hyperbola. Finally, for ¢ = 0, the trajec-

tory of the rocket is a circle.

The rocket may enter a circular trajectory only when ea=O. Therefore, for
: 0 from (15.'34)

" - ivy-

iThis parabola differs from the parabola of (15.10).
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 o oversince 2:2 iconsequently >2:0
for ¢ = 30°, Va= VK1 which has already been obtained before from otherThus,

considerations.

Fig. 15.9 shows the trajector cs of rockets when ea= 30° for different burn-
out velocities•

Section 15.4. The Range of a Ballistic Rocket

To compute the range of a ballistic rocket it is first necessary to compute

the central angle 28 between the end of the trajectory and the beginning of the

trajectory (fig. 15.8). When the trajectory is symmetric, it is sufficient to

find half of the central angle, i.e., 8. The initiaL angle _0 in equation (15.33)

may be selected arbitrarily. Let us assume that it is equal to O. Then

• (15.35)
14- _ cos (_ :_ 'h)

For an elliptic _trajectory (¢ <l) radius R achieves a maximum value when

achieves a value of

_max P

I--, (15.36)

This maximum occurs when cos(_p_;0)=--I or _-V_0=_. From this it follows that

= _ -+ _'o- . (15.37)

Utilizing only the lower sign in (15.37) and expanding the expression for

_0' we obtain '_.
g

_,: _ - a,c cos R7 = I
t

or

= =,-- arc cos
_s 20. -- I

goRo2

(15.38)
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If we set the derivative d_/d cos2eato O, we can determine the burnout

angle 0a which provides for a maximum angle _ and a maximum range with a given

velocity Va

(cos 2 ea) opt == .I I . _ I

for Va< VKI (ea)op t _ 45° •

The nature of the function (ea)opt = f(Va/VKl) is shown in fig. 15.10. The

optimum burnout angle decreases when Va increases and for Va=VKI becomes equal

to O, as required for the circular orbit of a rocket,

0 .. t .Y._

Figure 15.10. Curve showing variation in optimum burnout

angle as function of burnout velocity.

The range,

out angle is given by equation

or more precisely, the angle 8, in the case of the optimum burn-

-V/'l __ v_Rl_
goR g '

_2

== - arc cos (15.39)2 !

2-- .VaR°

goR_

or for

_ _--_I'CCOs
/

(15. o)Z505
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_e total flight range along the surface of the" Earth is equal to

= + Tb + (i .41)L L a

where L a is the range along the ac__ive region of the trajectory; L b is the

range along the ballistic region of the trajectory; and LK is the range along

terminal region of the trajectory.

The ballistic range is determined by the expression

Lb = 0. (15.42)

As we can see from expression (15.42), for a given _ the ballistic range

does not depend on the altitude of the active region Ha = R_ - RO. The equations

for the trajectory were obtained without taking into account the rotation of the

Earth. The rotation of the Earth affects the trajectory of the rocket in two

directions:

(i) As its component the velocity vector V a contains the vector of the

peripheral velocity due to the Earth's rotation, whose modulus is equal to

Vpe r = _3Ro cos _, where _ is the altitude of the place, and w3= 0.251 rad/hour=

725 x l0 rad/sec is the angular velocity of the Earth. The component due to the

velocity of the Earth's rotation changes both the magnitude of the velocity at

the end of the active region Va and also the direction of the rocket flight (the

firing plane);

(2) Due to the rotation of the Earth, during its flight time tb the rocket

will drop to the west of the impact point for the case of a fixed Earth by a dis-

tance tbVpe r impact where Vpe r impact =W3Ro cos _impact is the peripheral veloc-

ity of the Earth at latitude where the rocket hits. To compute L K in equation

(15.41) we may assume that over this region the trajectory is also elliptic. The

length Lais determined from the calculation of the acti_region of the trajectory.

Section 15.5. Errors in Range of Long-Range Ballistic Missiles

The actual range differs from the required range as specified by equation

(15.41), first by the magnitude of the error accumulated over three regions of

the flight and secondly by the value of the purely computational error

ALcomputational, which occurs due to the inaccuracy in determining the mutual
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position of the launching place and the impact point. Thus,

L@= (LaIALa) +(Lb_ALb) +(LK_ALK) + ALcomputational. (15.43)

Let us consider in detail all the componentrange errors.

1. The error in the distance to the termination of the active region of
the trajectory (ALa) dependson launching conditions, the state of the atmos-
phere, the accuracy of rocket stabilization over the active region and the
deviation of rocket parameters (weight, aerodynamic characteristics, thrust of
the engine, etc.) from the design values. All these deviations along the active
region in addition to the error in range ALa (15.11) change the parameters at
the end of the active region Va, 8a and Ha;

2. An error in the range of the ballistic region of the trajectory (ALb)

is determined in terms of the error in angle 6, i.e.,

ALb = 2A_Ro.

In accordance with equation (15.38), angle _ is a function of Va, ea and Ha =

R_ - RO, i.e., of the parameters at the end of the active region of the trajec-

tory:

f

A

\

Figure 15.11. Range Error at End of Actiye Region.

The occurrence of deviations AK, Aea, AR_ from the design values Va, ea

and R_ (or Ha) leads to an error A_
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(15.44)

By expanding expression (15.44) in a power series of deviations and con-

sidering only the linear terms of the series, we find

where

ol

I_--o (_;+ _R;)l_,,,=_o.=_R'ko

To compute coefficients fV, fO and fR it is necessary to take the partial

derivatives of expression (15.38).

For an optimum trajectory, according to equation (15.39) the error in the

slope to the first approximation will not lead to an error in the ballistic

range. Figure 15.12 illustrates the effect of errors AV a and AR = AH a on the

error in the ballistic range.

3. The error in the range of the terminal region of the trajectory (ALK)

depends on the parameters at the termination of the ballistic region, and on the

stabilization of the rocket in the dense layers of the atmosphere and on the

deviation of the weight and aerodynamic drag of the rocket from design values.

\

Figure 15.12. Graphs illustrating effect of errors in altitude

and in velocity at termination of active region on ballistic

range. ..
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Of all the component range errors the most significant one is the error AT.b,

due primarily to the deviation of Va from the design value.

Section 19.6. The Active Region of the Ballistic Rocket Trajectory

In computing the ballistic region we need not consider the Earth's curva-

ture, because L a is small compared with Lb. The equations for the longitudinal

motion of the rocket along the active region in this case assume the well-known

_orm (_ig. i5.13)

dV
m_ Pcosa -- X-- mg sin O,

dt

mV j-O- == Y.q- Psin_ - GcosO,
dt • •

" °'--2L" _,t (=, _,v, a, O,
z 0/2 -=-

0-k.a : C_ - '

(15.46)

where P(V,p,t) is the thrust of the engine; m is the mass of the rocket;

_'_ -- c_(M, _)Y= c_.s--2-- , cy is the lift force and its coefficient;

pV 2

X=c.,S-_--, cx=c_(M,_) is the resistance and its coefficient; Jz is the moment

Y
of inertia of the rocket with respect to the transverse axis; M - is the

a

number M (a is the velocity of sound at the altitude where the density is equal

to p); and M z is the moment with respect to the transverse axis_ which depends

on angle of attack _, air density p, velocity V and the deflection angle of the

control surface (gas or aerodynamic or both).
p. -

.

/
/
!

"' _

'1
I

Figure 15.13. Forces which act on rocket in active region.
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The moment M z is also a function of time, because as the fuel is consumedj

the distance between the center of gravity of the rocket and the center of

thrust Y changes. The mass m and the moment of inertia Iz are also functions of
time.

To compute the law for the variation of velocity V, of altitude H and of

the range alongthe active region La, we may use the programed variation in the

slope of the trajectory e 3 = e3(t ). In this case V, H and L a are obtained by

the numerical integration of the system of equations

i11. --
dV

dl
= p -- X-- Illg Siil 03,

dll
= 11sla 0,,

dl

d/-. = V cos 0_.
dt

(15.47)

In solving equation (15.47) to the first approximation, we may assume that

the angle of attack is equal to 0. Furthermore, we may refine the solution by

determining the required angle of attack _ =_(t) and using the value of _= _(t),

thus obtained, in the iterative solution of equation (15.47). After determining

the velocity and the flight altitude as functions of time (from the solution of

the system of equations (15.47)), we obtain from the last three equations (15.46)

the equations for small deviations of angles _, e and O.

If we take into account the action of aerodynamic and reactive control sur-

faces, these equations have the following form

._a_ P Vs

lllv d&Odt =( r'_gs Pv*--+P)a-T-'Yn--2-°" _P%692

AO = AO q- o,

-- 6 cos Oe,[

"l

! (15.48)

where 6a is the deflection of the _erodynamic controlsurface; and 6g is the de-

flection of the reactive control surface.

In the first equation (15.48) we have takeninto account the components of

the lateral force produced by the deflection of the control surfaces. The upper

sign refers to the rear and the lower sign to the front position of the control
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surfaces. All the coefficients in equations (15.48) as well as m, V, Cy, p, P,

c_a, p6g, iz ' M_, _a, _g are functions of time. These functions are determined

from the solution of (15.47).

Let us consider the stages of motion of a rocket whose angular oscillations

may be described by equations (15.48).

1. Motion in'the Earth's atmosphere with a velocity for which the effect

of aerodynamic forces is substantial. Equations (15.48) for this case will be

written in the form

d,xO V COSUe,• " TvT=a_cta6aT-c'g6g Tvg" ^

,dr----T--I--m'" d-7- :l- nz'_. =m++-.6,, -k n g,

AO = AO-1- _,

(15.49)

where

Cay.S PVa
2r_ = mY [sec]; c"'=

,, pl '2 . • PVI
%s 7 + t_ cvs 7 + _"

M°'z M', "
• P_g ; ILL" = --" IlL+t = --"

c_g_ c_s PV_ lz ' lz '-7+ e

_ ,'.++,+. M,+g
,_+'-- :--_--; m'_= s---7"

2. Motion outside the atmosphere or in highly rarefied layers of the at-

mosphere, where the effect of aerodynamic forces is insignificant and therefore

m _ : m_ = c6a = m6a = O, while T v = mV/P. The equations for this case take the

form Tv dAO _--=a + CSgfg
dt

AO _AO -t-a.

Tvg

V
COS0e,

(i5.5o)
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Equations (15.50) are valid for the launching of the rocket when the aero-

dynamic forces and moments are small due to low flight velocity.

The most general are equations (15.49), which are transformed smoothly into

equations (15.50) or vice versa.

If we fix ("freeze") the coefficients (15.49) for different instants of

time, we may obtain transfer functions for the angles A@, AS and _ in terms of

the angular deflection of the control surface (it does,not matter which one -

8g or 6a)

Z'g (_'_+ ,.'"v + ,.') -I-"-_
w0(p)= W rv .

I

r,, ]P

c_g (P -t- m,_) -t- mSg_7-V
!

_v.(?)=

w_o(p) -"

;+

"-_V mI'

p'_+ (m,° 1 . m" \•

(15.51)

In the same way from equation (15.50) we have

c_g+,,"g
_o(p) = (rvp+l)p, ' ..

• _ _-+ _g v+r_m%.
_n (r)--'_TT,p_ ,

m_g

:.w_ (i,) = ,y .

(15.52)

Figure 15.14 shows the logarithmic amplitude-frequency characteristics for

the pitching angle of the ballistic rocket constructed on the basis of transfer

function WA@(p ) . The logarithmic amplitude-frequency characteristics are con-

structed in accordance with (15.51) for two values of the parameters, correspond-

ing to different values of the coefficients at different stages of the active

region of the trajectory, while (15.52) is used to construct these characteris-

tics for one value ofmSg.
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Equation (15.49) describes thebehavior of the nonstationary linear dynamic

system. By fixing or "freezing" the coefficients for different instants of time,

we obtain in this manner a series of stationary systems for each of which we can

write the transfer functions. However, for the nonstationary linear systems as

well as for stationary ones there is also a concept of the pulse transfer func-

tion and the pulse transient function. If we undertake the operation to elimi-

nate the variables, for example, f_om equations (15.49) we obtain one equation in
terms of some one unknown

A(t, p)x = B (t,p)_, (15.53)

where p = d/dt and in the general case

A (t,p) = a. (t)p" -1-a.._,(0P"-' +... + a_(OP -t-ao(t);

B(t,p) = b,,,(t)p" + b,,_,(t)p',,-' +... + b.,(t).p + 0o(,9;

(15.54)

Fig_e 15.14. Logarithmic _plitude-frequency characteris-

tics of the pitching angle loop of ballistic rocket.

It can be shown that the transfer function of a nonstationary system is the

solution of some linear equation with variable coefficients having the same

order as equation (15.53)

dn cln--i , , , . ..
_. (t)-_,;-_v(t, s)+ _..__d-?=,_r,(t, s) +.. _

_v(t,s)+ A (t,s).w (t, s) n(t, s),.... + _i (t)--d

(15.56)

where s--a complex number--is the Laplace transform,

I O_A-(t ,s)
% (t) = _i as"

(k 1,2,...).
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if we fix the coefficients of equation (15.53), all derivatives of W(ts)

will become equal to O. Then, from equation (15.56) we shall obtain the first

approximation of the transfer function of a nonstationary system as functions

of the complex parameter s

_i_,si (15.57)
:I_ (Cs) ,I(I.9"

_ne transfer function (15.57) has the same meaning as transfer functions

(15.51) and (15.52), i.e., it also has different coefficients for different

instants of time. However, it is somewhat more accurate than transfer func-

tions (15.51) and (15.52), which may be clarified in the following manner. The

transfer function (15.57) was obtained from equation (15.53) after its coeffi-

cients were fixed at different instants of time. Equation (15.53) itself is

obtained from a system of nonstationary equations by excluding the variables

which are of no interest. As far as the transfer functions (15.51) or (15.52)

are concerned, they were obtained from a system of equations whose coefficients
were fixed.

The complete solution of equation (15.56), which gives the refined values

for the transfer function, is represented in the form of a series

_v(t,_)--_ _v_,(t,_), (15.58)

and the _th term of the series is computed by means of the recurrent equation

I _ " (n)!v_.= A(t,_)[ ._(t)w__,+... + _,(0_k__,].

The slower the variation in the coefficients of the initial equation

(15.53), the faster is the convergence of series (15.58) and the closer is the

true value of W(t,s) to its first approximation Wl(t,s ). From transfer func-

tion W(ts), considering t as a parameter, we may use the inverse Laplace trans-

form to obtain the pulse transfer and pulse transient functions. The pulse
transfer function has the form

• S+ia, .

H'(_,I)= _ S IV(,,s)e,Tds, (15.59)

the transient function has the form

• s t-i_

/I(,.0 :--_ :v(t,s)-F,Is.
• $.--j eo

(15.6o)
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in expressions (15.59) and (15.60) parameter t represents the instant of

time when reactions 6(t) is applied for (15.59) and l(t) for (15.60). We can

obtain the approximate values of the transfer functions, if in equations (15.59)

and (15.60) we replace the exact value W(t,s) with an approximate value in the

form Wl(t,s ) or in the form of transfer functions (15.51) and (15.52). Again,

the slower the variations in the coefficients of the initial equations, the

closer will be the approximate solution to the true one. However, because the

transients functions are not subject to extremely rigid requirements, I even in

the case of relatively rapid variation in the parameters" which takes place along

the active region of the ballistic missile trajectory, the computation of tran-

sient functions on the basis of transfer functions(15.51) and (15.52) is quite

adequate. Tnis means that the same transfer functions may be used to select the

parameters of the rocket control system along the active region.

TO T v

sec sec

30

2O

0 ioo
...J

2O0
T sec of flight

Figure 15.15. Variation in coefficients of transfer function

of ballistic missile along active region.

Figure 15.15 shows the curves TV : Tv(t), TO = To(t ) for the active region

of some arbitrary ballistic rocket, showing the nature of the variation in the

coefficients of the ballistic rocket transfer function. The transfer function,
in terms of the pitching angle, is taken in the form

(rvp + l) ko
0,)= + 2:oTop+ ,)7' ' (1 .61)

iThus, for example, in a second order system it is quite permissible to assume

that the variation in the coefficient with respect to damping is from 0.4-0.9.
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where

k0 =

2¢oTo=

(n,'-_ -nz_T ; TO =TV). g , "". II," _- _-_ .;

"!/ gllw ' "

m"-I-Tv _/ Tv

The amplification factor k0 and the attenuation factor _0 remain approxi-

mately constant I ko_0.8 1 and _0.05 - O.O1. As we can see from the graphs,
see

constant TV varies most intensely between the 40th and the 50th second of :Flight /515

time, when the slope of the increase in T V reaches a value offal. 3 sec/sec. If

we require that the duration of the transient function of the pitching angle be

approximately 5 sec, then T V will increase from TV = ll sec to TV= 17.5 sec dur-

ing the period of the transient process (beginning with the 40th second). It is

obvious that even in this rigid case the variation in TV (and also TO) will not

affect the nature of the transient function from the standpoint of effective

stabilization of the rocket's pitch angle.

Equations (15.49) determine the dynamic properties of the rocket during

longitudinal motion (motion in the firing plane)_ The equation for the lateral

motion of the ballistic missilewill be the same as equations (15.49), if the

gravity force is set equal to O.

e,__¢_++. m"@ + = .:"6a'+ .:g5g:;dl s a_ ,

(15.62)

iFor the given case.

2The firing plane is the vertical ilane passing through the launching point and

the target.
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where _ is the angular deviation o the rocket's longitudinal axis from the
firing plane; 8b is the deviation in the rocket velocity vector from the same

plane; and _ is the angle of attack in lateral motion.

Because of the rocket's symmetry, the control coefficients (15162) have the
samenumerical values as the control coefficients given by (15.49).

In addition to expressions (15.49) and (15.62), we must also bear in mind
the control of rotation (tilt angle) of the rocket with respect to the longi-
tudinal axis

_:, . -_ = Mx 8.,

where _ is the tilt angle; Jx is the moment of inertia of the rocket with re-

spect to the longitudinal axis; _x x is the coefficient of the damping moment;

6g 6a are the deflections of the jet and aerodynamic control surfaces which pro-

duce moments around the longitudinal axis; and _g, _a are the coefficients of

these moments. The damping moment _xXdd_t is rather small in ballistic missiles

and may be neglected.

Z_I6

Section 15.7. Automatic Control of Rocket Flight Over the Active Region

The purpose of controlling the flight of the rocket along the active region

is to assure that the rocket flies in the firing plane and to maintain a programed

value for the slope of the trajectory e3(t ).I In the case of self-contained

guidance, these problems are solved by the automatic pilot on the basis of in-

formation obtained from the gyroscopes and the inertial system of navigation.

First let us consider the control of the missile by means of gyroscopic devices

involving gyroscopes with 3 and 2 degrees of freedom. Figure 9.10 shows the

position of the rocket's control surfaces and the description of their operation.

Since the tilt angle of the rocket is stabilized, the position of the con-

trol surfaces in space remains fixed. The stabilization of the tilt angle y and

iThe problem of automatic control is, of course, also concerned with range con-

trol. This question will be considered briefly in section 15.9.
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the course angle _ is accomplished by signals from a gyroscope with 3 degrees of

freedom. The axis of the gyroscope's rotor is situated along a normal to the

firing plane. The gyroscope has pendulum compensation which is disconnected be-

fore the rocket is launched. These signals _ and y for stabilizing the rocket

are taken from the potentiometers of the gyroscope. The second gyroscope with

three degrees of freedom produces signals for the pitch control surfaces 2 - 4.

The axis of its rotor is horizontal and lies in the firing plane. The gyroscope

has pendulum compensationwhich is turned off before the rocket is launched.

The potentiometer, whose brush picks up and sends signals to the control sur-

faces 2 - 4, is connected with a programing mechanism which programs the slope

of the trajectory.

It follows that the control of the rocket is reduced to the stabilization

of angle _ and y (_3 = O'Y3 = 0) and the tracking of the pitch angle to assure

that it has the programed value _3(t) = e3(t ). To solve these problems, it is

rational to use an astatic automatic pilot (an automatic pilot without feedback

or an isodromic automatic pilot). To use an automatic pilot without feedback,

it is necessary to have methods of measuring the signals for the angular velocity

(_ and _, respectively) and the angular acceleration _ (_ and _, respectively).

However, it is not necessary to measure these signals, if we use a subsequent

compensating network which performs double differentiation in the circuit for

the signals @, y and @ from the gyroscope's potentiometer to the control sur-
faces.

Figure 15.16 shows a functional diagram for the control of the pitch angle

with a series compensating circuit. The series compensating network with a
transfer function

(Tip -1- l) (T W -1- l)

(T_p -]- l) (T,p +.l)

may be either in the form of a double differentiating network, when

TI >T2 >_3 >T4' or in the form of an integrating-differentiating network, when

T 3 >T I >T 2 >T 4. To retain the same dynamic properties in the circuit for

controlling the pitch angle, it is desirable to vary the circuit parameters

From the programing mechanism

_(TIp+I)(T,,p*I)Lu _ ko{Tvp','l) _.

Figure 15.16. Functional diagram showing pitch angle control

with series compensating network.
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Ti, T2, T3, T4 either as functions of time or as functions of the velocity head.

The dynamic properties of the pitch angle control circuit are characterized

completely by the logarithmic frequency characteristics of the open circuit and

by the cutoff frequency w c. If the control time for the pitch angle must be

within the limits 3 -6 seconds, it is necessary to have w c= 0.5-1 1/sec. For

small velocity heads, when the natural frequency of oscillations of the rocket

1/T 0 is small, the cutoff frequency _c = 0.5-1.0 turns out to be greater than

the natural frequency I/To, and the compensating network in this case consists

of a double differentiating circuit. At high velocity heads w c becomes less

than l/T0, and the compensating network is transformed into an integrating-

differentiating Circuit. During launching and during flight outside the atmos-

phere, the compensating network also consists of a differentiating circuit.

Figure 15.17 shows the amplitude characteristics for a large velocity head

and for a small velocity head. As we have already pointed out, the variation

in the parameters T1, T2, T 3 and T 4 and the change in the form of the circuit

may be carried out by the programing mechanism as a function of time. The pro-

graming mechanism must also be used to change the total amplification factor of

the circuit by changing kc (fig. 15.16).

If the rocket has a digital computer, the functidns of the compensating

device may be assigned to it. Let us assume that T is the operating frequency

i
of the computer. In particular, this means that the results produced by the

computer are in the form of a sequence of rectangular voltage pulses, whose

amplitude corresponds to the results obtained by the computer at the instants of

time t =nT (n= O, i, 2, ...). If it is necessary to program the computer to

realize a compensating network with a transfer function W(s), it is sufficient

to find the reaction of this network at discrete instants of time t =nT (n =0,

i, 2, ...) to a rectangular pulse with duration T and with unit amplitude. The

transform of a unit pulse of duration T is equal to

sT
where z = e .

I -esT ;'--I i ,

S .Z $

iThe value of T for computers aboard the missile may vary in the limits 0.05-

0.3 sec.
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Figure 15.17. Logarithmic amplitude-frequency characteris-

tics of circuit which controls pitch angle of ballistic

missile: a, for large velocity headsj b, for small velocity
heads.

Consequently, the transform of the output of the compensating network will
have the form

t_.'."(s) = lie(s). _L '- i..s (15.63)

Since we are interested in the reaction of the pulse network, we must go

from transform (15.63) to a discrete transform whose parameter is z = eST. i

In its discrete form the transform u*(s) is the transfer function of the com-

puter (subscript M = computer')

lie u [Z] = bqzq -t" bq__12q':"-I .-it- . • "t- _lt 2 '-t" b 0

• zv-i'lclt__lz/-l-I t- . , 7i t" all-I-OO " ..
(15.64)

IG. S. Pospelov, Sampled-data Contrc,l Systems, "Automatic Control and Computer

Engineering, " Mashgiz, 1960, No. 3.
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Since the transfer function of the computer WM[Z] is the ratio of the trans-

form at the output u and the input e, the computer program follows from equation
(15.64) in the form of a recurrent relationship

u, = bo_,_,-F b_,_-l-, +. • •q- bq_,_,+q_,_, + bq_,_q_, --

--[aolt,,_,.-J-altt,,+__,+ ... + a,_,,,_ d.
(15.65)

Let us determine the program for this case when

W (s) " (T,._+ i) (T,s+ i)
(T_ -t- 1) (7"4s ._- 1) :

For this case

where

u* (s)= z-I (T,s+l)(r,s+ l)
• z (T=s-J-I)(T_s-J-I)

i
°_

$

• c,_+,c,1,,= _ s+... r---_ s+--_-

Co= 1, ca:- (Ts'TI)(T=--T_) (T*--T1)(T*--Tz)
(T 4--.Ts) T= ' c4 _ (T3 -- T4) T4

(i5.66)

From expression (15.66) by using the z-transform we find

where

' bzz_"l- blz "I- bo
w,, [z] =- ............... ,

z"--I- a,z -t- ao

4 = Co_t"c_-t- c,,

T

al= -(z3-t-z_): ao =z3z_; z3=e r, .
I

T

T, ;Z4 _----:_

O, ' [Co(Z3+z_) +c_(z,-- l)+c,(z, + I)1;

• bo=CoZ3Z_-l_caz4_l_c, z3"

(15.67)
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From equation (15.67) we obtain the program of the computer

tt,,_.--_-bo_,_ 2 -t- bFn_l at- b2_,, aott,__ 2 -- atttn_ '.
(15.68)



From expression (15.68) we c_....see that every nth pulse at the output of

the computer is proportional to the sum of the input signal ¢ during the nth

interval of time and during two preceding intervals of time_ and also propor-

tional to the sum of two output pulses during two preceding intervals of time.

The coefficients bo, bl, b2, a0 and aI are computed and stored in the memory

of the computer. Since parameters TI, T2, T 3 and T4 must vary with time, the

computer must replace the values of coefficients bo, bl, b2, a0 and aI at in-

stants of time programed beforehand.

•_ne system which we have considered for the control of the rocket along the

active part of the trajectory by means of gyroscopic sensors has two shortcom-

ings:

(i) the trajectory of the rocket is not stabilized in the firing plane;

therefore, there is a miss LA0b, where L is the range of the rocket and A9 b is

the error in stabilizing the velocity vector;

(2) the fast response of the control system to the pitching angle achieved

by using compensating devices does not mean that the system reacts with the same

speed to the slope of the trajectory, which is actually what we require.

Both of the shortcomings may be avoided by using an inertial system of

guidance. Let us assume that the x-axis of the inertial system of the second

type is oriented in the firing plane (fig. 5.33)- Then the z-axis of the sys-

tem will be normal to the firing plane, and from the first and second integrator

of channel z of the inertial system we can obtain deviation signals z and devia-

tion rates z of the rocket from the firing plane. By feeding these signals to

the control surfaces ofthe rocket we obtain a stabilization system for the

rocket in the firing plane, which was described in detail in section 1 of this

Chapter.

The second shortcoming can be overcome by the inertial system itself, be=

cause it measures the value of the rocket's velocity vector, i.e._ it deter-

mines the modulus of velocity V and the slope of the trajectory e. Since the

z-axis is normal with respect to the firing plane_ we have

0 ---- a rc tg Y----,
X

where x and y are the signals from the first integrators of the x and y chan-

nels of the inertial system. Equations (15.69) and (15.70) are valid, if we do

not take into account the curvature of the Earth. For the active region of the

trajectory, it is permissible to neglect the curvature of the Earth.
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Figure 15.18. Functional diagram showing control of ballistic

missile trajectory slope.

When the signal of 0 is measured, it is possible to develop a circuit for

controlling angle _, rather than the pitch angle @, as was true in the preceding

case. Tne variation of the functional diagram for controlling the slope of the

trajectory is shown in figure 15.18. Unlike the system which controls the pitch

angle, the servomotor in this case has isodromic feedback. The transfer func-

tion of the servomotor with isodromic feedback has the form

where

kc

W,(p) -- P
rkc

• . 1-t---
T.p _- 1

T.p + 1 k_! _ k¢_ (T.p-I- 1)
Top _ 1 p p

(subscripts c = servomotor, H = load),

• kc T.

k¢1 = 1 "-t-rk¢ and T¢ _ - i -[- rk¢

Usually k c has a sufficient value so that T c<< TH and we can neglect T c-

In this case the transfer function of the servomotor is represented as a product

of the ideal forcing element and the integrating element. As a whole, the func-

tional diagram shown in figure 15.18is identical to the functional diagram for

the pitch angle shown in figure 15.16, where the role of TV is carried out by the

isodromic circuit constant TH. The identity of these functional diagrams shows

that it is possible to obtain a control system for the slope of the trajectory

with as good a response time as the system involving the control of the pitch

angle. To control and stabilize tLe rocket along the active region of the

trajectory, it is quite appropriateto use adaptive automatic pilots, whose

principle of operation is described in section i0.i0. An adaptive automatic

pilot will provide for constant dynamic characteristics of the circuits for

stabilizing and controlling the rocket, even though there is a substantial

variation in the dynamic properties of the rocket itself.
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Section 15.8. Controlling the Range of a Ballistic Missile

As we have shown, the range of a rocket in the case of an optimum trajectory

is determined by velocity Va at the end of the active region. Therefore, the

simplest way of controlling the range of the rocket is to turn off the rocket

motor at the time when the rocket has reached the required velocity. To do this

it is necessary to measure the actual flight velocity of the rocket and to track
it.

• .X V

ma

Figure 15.19. Schematic diagram showing position of acceler-

ometer which measures longitudinal acceleration of a rocket.

The measurement of a rocket's velocity can be carried out by radar methods

using the Doppler effect, or by means of devices contained aboard the rocket

which integrate the rocket's acceleration. In the simplest case, an acceler-

ometer is installed on the frame of the rocket and its mass is displaced along

the longitudinal axis x of the rocket. The mass of the accelerometer m will
a

be subject to the resultant force composed of the acceleration due to gravity,

the longitudinal acceleration of the rocket V and the normal acceleration of the

rocket V@ (fig. 15.9). Since the accelerometer is oriented along the longitudi-

nal axis of the rocket, the signal produced by the accelerometer will be equal
to

/. = _'¢os :, + V6sln _'- gsln (o + '0. (15.71)

If we neglect the angle of attack, then

V =-1.,. -- gs!u O. (15.72)

The angle O may be replaced by its known programed value, then

t !

"=S '
0 0

(15.73)
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Thus, in order to obtain the velocity it is necessary to integrate the read-
ings of the accelerometer and take into account the second term in expression
(15.73). Onemethod of realizing this is to use a gyroscopic integratorl--a de-
vice which combines an accelerometer and an integrator. This device consi_;ts of
a gyroscope whose external frame axis is directed along the x-axis of the rocket
and does not pass through the center of gravity of the rotor (see Chapter 5).

This method of controlling range does not take into account many factors on
the range error. In particular, the error in the coordinates of the burnout
point is not taken into account. The error in the burnout altitude is also quite
substantial. Equation (15.38) showshow we can eliminate the effect of the error
in the burnout altitude on the range error. Let us recall that in equation

(15.38) R_ = R0 + Ha, where Ha is the altitude of the active region of the trajec-

tory and R0 is the radius of the Earth. Elsewhere in equation (15.38) we have a

product consisting of the square of the velocity Va and the radius R_. In con-

nection with this, if the engine is turned off when the quantity _ = V2R_= V2(Ro+H)

reaches its assigned value _a =V_(R0+Ha)' the effect of the altitude error will

be excluded. The quantity _ must be computedcontinuously by meansof a computer
operating with an inertial system.

If we neglect the curvature of the Earth along the active region of the
trajectory, we can obtain _ from equation

where
+"y) + (15.74)

y is the output of the second integrator of channel y_ _ is the output of the

first integrator of channel y; x i_ the output of the second integrator of chan-

nel x; and x is the output of the first integrator of channel x.

Equation (15.74) does not take into account the effect of several less sig- /524

nificant factors: the error in the length of the active region of the trajectory,

errors in the weight of the rocket, etc. For this reason, more accurate methods

have been developed for controlling the range which are based on a continuous

1

V. I. Feodos'yev and G. E. Sinyarev, Introduction to Rocket Engineering,
Oborongiz, 1960.
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computation of range error during the entire active region of the trajectory, l
_nis error is computedby measuring the deviation of the parameters of rocket
motion from the programed values. The engine is turned off when the total range
error is equal to zero. However, the total range error due to the effect of
many factors may not becomeequal to zero at any period of time, particularly if
we take into account such factors as atmospheric perturbations along the active
region of the trajectory. To maintain a minimumvalue of this instantaneous
range error, it is necessary to actuate the thrust of the engine and the pitch
control surfaces as a function of this error over the entire active region of
the trajectory. The implementation of this idea is associated with substantial
technical difficulties and requires the installation of a digital computer
aboard the rocket.

IG. Tsien, T. Adamsonand E. Cute, Automatic Control of Long RangeRockets,
"Problems of Rocket Technology," 1953, No. 1.
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CHAPTER16. MISSILEGUIDANCESYSTEMS
ANDMETHODSOFEVALUATINGTHEFIRINGACCURACY

16.1 General Information

In the preceding chapters we considered the equipment carried aboard the
missile and the dynamics of automatic missile control for various guidance
methods. However, in combat the control of missiles is achieved by a whole
series of facilities which form the missile guidance system. The system
includes the controlled missile with its war head and launching facilities,
which in general include the tracking system and the launching control system.
A missile control system is developed to achieve a more effective destruction
of the target. The quantitative evaluation of missile control systems is one
of the problems of operations research. There are various criteria for effec-
tiveness and various approaches for establishing these criteria. For example,
in the work of Merrill and others I the criterion of effectiveness of the weapon
and of the guidance system is assumedto be the quantity E which is determined
by the equation

where D is the total damage,and C is the total cost of the system.

In particular, quantity D dependson the hit probability. The probability
of hitting the target in turn dependson the accuracy of firing or on the magni-
tude of miss distance at the target, on the charge in the warhead and the
detonator, and the initial conditions for attacking the target, and the reliabil-
ity of the control system as a whole and on manyother factors. In line with
the subject of the present book we shall consider only one of these factors:
the firing accuracy of guided missiles or the miss distance at the target. The
value of the miss distance at the target is a result of a whole series of ran-
domfactors and cannot be evaluated without recourse to the theory of probabil-
ity. We shall evaluate firing accuracy as it applies to the systems of homing
guidance and external guidance.

Weshall makesomepreliminary remarks concerning the requirements for hit
accuracy. 7he natural requirement for minimumor zero target miss is not always

IG. Merrill, G. Goldberg, P. Helmholz, Operations Research. CombatPart.
Launching of Missiles, I. L., 1958.
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feasible. If this requirement makes the entire system very complicated and

increases its cost, then its reliability is decreased and no useful effect is

achieved by increasing the accuracy. The requirements for accuracy must always

be compared with the effectiveness of the missile warehead and with the tech-

nical possibilities of realizing the control system.

i6.2 Homing Guidance Systems I

As an example, let us consider the homing guidance system for aerial com-

bat. The system consists of one or several missiles carried aboard a fighter,

launching devices and a sight. In launching target seeking missiles, sighting

is a necessary operation. Sighting makes it possible to reduce the initial miss

to a minimum. The accuracy achieved in hitting the target depends substantially

on the initial conditions when the missile is launched. (According to the

linear theory of homing guidance presented in Chapter 13, the miss at the target

is proportional to the initial miss.)

If we require that at the instant of firing the initial miss be equal to 0,

the sighting scheme for a guided missile will be the same as for an unguided

missile 2. At the moment of firing the missile must move to the instantaneous

collision point with the target. For this reason, the missile must be fired at

the instant of time when the follo_ing condition is satisfied (see equation(13.8)

and figure 13.6 )

0 --:- -- V T sin ? t- V sin _, (16.2)

(subscript T = target)

where V is the absolute velocity of the missile; and _ is the lead angle.

On the other han_ from the conditions of approach

L_ = -_p sin _+Vfp sin _, (16.3)

where Vfp is the velocity of the fighter plane.

By eliminating the product VT sin _ from expressi0ns (i6'2) and (16.3) , we
obtain the equation of sighting

L

sin : V- : (16.4)

(subscript p = computed).

IV. i. Marisov and I. K. Kucherov, Guided Missiles, Voyenizdat, 1959.

2Under the assumption that the vectors of target velocity and missile velocity

are constant.
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According to equation (16.4), the launching of the missile takes place at

the instant of time when the sine of the lead angle is equal to the product of

the angular velocity of the line joining the fighter plane and the target and

L i Equation (16.4) is used by the computer to
the computed time %- V - Vfp "

compute the required or assigned value of the lead angle @3=arc sin @ .%.

To compute 43 it is necessary to introduce the signals _, L, Vfp and V into the

computer. The signals _ and L are measured by the sight; the velocity Vfp is

also measured aboard the fighter plane. As far as the velocity of the missile

is concerned, its proposed average value is introduced into the computer.

We describe two types of maneuvers of a fighter plane which precede the

launching of a guided missile. The first one consists of the following. After

the target is sighted, the computer begins to calculate the value of 43. The

signal 43 is fed to the display of the sight. The pilot turns the airplane in

such a way that the actual lead angle @ is equal to the programed lead angle.

The actual lead angle is the angle between the axis of the airplane 2 and the

axis of the sighting antenna directed towards the target (fig. 16.1). In prac,

tice this may be accomplished in the following manner: the computer determines

the guidance error A_ = 43 - 4, and this error appears on the screen of the

sight as a luminous point. The position of the luminous point gives the error

components in the vertical and horizontal planes A_vertica I and A@horizont_ _.

Re pilot turns the airplane in such a way that the mark is at the center of the

cross hairs when the sighting error is equal to 0. The pilot continues his

flight so that the mark is at the center of the cross hairs. In this case con-

dition _ = 43 is always maintained, and the pilot is always ready to launch the

missile. When condition _= 43 is maintained, the flight takes place along the

so called attack curve.

We note that the movement along the attack curve may be automated by feed-

ing a signal A9 = _3 - _ to the automatic pilot of the fighter plane. The mis-

sile may be launched after the homing guidance head of the missile has captured

iThe calculations of % may be carried out by using more exact equations.

2More accurately between the velocity vector of the airplane and the axis of the

sight; however, in this case, the angles of attack and the angles of slip of

the airplane must be introduced into the computer.
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the target_ which sends in a speci_ i signal to the pilot_ or before the homing

guidance head of the missile has captured the target.

In the latter case, it is desirable to program the movement of the missile

in accordance with the data on the motion of the target and the missile avail-

able at the time the missile is launched.

The airplane may move along the attack curve with large load factors and

consequently with large angles of attack. If the suspended missile is not

oriented along thevelocity vector of the airplane, its angle of attack will be

greater when the angle of attack of the airplane is greater (fig. 16.2). This

angle of attack has a perturbing effect which, according to (13.56), corresponds

to some initial miss velocity.

T

I YLA
I / z

J / /Instantaneous
I z

I z impact point of missileI / / at the target
I //

_. A_ h - horizontal

A_"v - vertical

. _

Figure 16.1. Schematic diagram showing first type of maneuver;

h = horizontal, v = vertical.

To decrease the perturbation associated with the initial angle of attack of

the missile, it is necessary to launch the missile when the flight of the fighter

plane is almost rectilinear. To achieve this, a second maneuver is carried out

in the following manner: after the target is captured by the sight, the fighter

is brought into a position with respect to the target, such that the approach to

Vfp

Figure 16.2. Schematic diagram of second maneuver: a, angle of

attack of fighter plane at instant of launching; VC, velocity

of missile with respect to fighter plane; _0' initial angle of
attack of missile.
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the target is carried out with a constant miss. This is equivalent to the
figeater making a parallel approach to a hypothetic point situated behind the
target. Whenthis point is approachedproperly, the lead angle @or the angle
between the distance to the target and the longitudinal axis of the fighter
will decrease continuously (fig. 16.3). The computer of the sight actually com-
pares the lead angle with a given value computedby meansof equation (16.4).

Fighter miss x/_Fighter

I / \,,i,/-ki miss

Hypothetical_/ / • //__<_-'--'

behind target / / t / r, ///
• / I / i / I /1_.._=%
11!1;/,/I "
I I I / i •

i// .v_>v_ .

• i ,._-Iy>%

,// Entering approach position with constant miss

!
!

Figure 16.3- The schematic diagram showing the maneuver with
constant miss.

At the instant of time when these two angles coincide the missile is launched.

If the fighter plane continues to fly in a straight line after launching the

missile, it will fly to the rear with an insignificant constant miss with respect

to the target which is hit by the guided missile.

This short description of the guidance system points to a way for investi-

gating the accuracy of hitting the target. As a measure of accuracy in hitting

the target, we can take the root-mean-square value of the miss for a range when

the missile can no longer be guided due to the blinding of the homing head or

when coordinates _, _, 6 (see Chapter 13) achieve their limiting values. The

value of the miss is computed by means of equation (13.46) if we assume L= Ltilt

and if _ and Vrelative correspond to this value of L. The miss value computed

by means of equation (13.46) would be the true miss if the velocity vectors of

the target and of the missile remained constant from the time when L = Ltilt.

Actually the miss will differ from the value computed by means of equation

(13.46) because of the maneuvers of the target. In spite of this, in the
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c_Iculations it is convenient to select the root-mean-square value of the miss

for the range L = Ltilt , because it is precisely this value which characterizes

the quality of the process of controlling or guiding a missile in the linear

theory of homing guidance. The miss represents a random vector quantity or a

random two dimensional quantity.

p_z)

--X

Miss when L = Ltilt

miss

o x

Figure 16.4. Curves sho_ing probability density of miss in

two-dimensional motion.

p (x) = _exp

V_or

--probability density of miss; Ox--mean square value of miss;

accuracy measurement.

_ne miss of a missile with honling guidance occurs first of all because the

control system does not reduce the initial miss to zero, and in the second

place because perturbations in the course of the missile's flight produce addi-

tional misses (see Chapter 8). In this connection it becomes necessary to t_e

into account the internal noise in the control system and the external disturb-

ances which react on the missile's control system.

Let us Consider briefly both components of the miss and the methods of com-

puting them.

The Miss Component Due to the Initial Miss or Due to

the Initial Zero Conditions at the Instant of Firing.

This miss is unavoidable due to instrument errors and methodical errors

associated with sights, due to perturbations at the instant of launching, due to

inaccuracies in the launching equipment, due to pilot error, and due to many

other factors. The many factors responsible for the initial miss make it Dos-

sible to consider it as a random quantity, whose distribution follows the _lormal

law. If we compute the sighting process by means of linear equations (see Chap-

ter 13) , the target miss will also have a distribution which follows the normal

law. Figure 16.4 shows typical miss probability densities for two-dimensional
motion.
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The Miss Component Due to Noise arid Perturbations

As an example, let us consider the functional diagram shown in figures 13.19

and 13.20 for missiles with a control system which provides for guidance by the

method of parallel approach. The control system is subjected to noise v(t),

which is contained in the signal for the angular velocity of the line joining

the missile and the target and which is of a complex nature. It is due to the

fluctuations in the signal reflected by the target and the internal noise in

the target coordinator. This noise has a nonstationary nature, particularly in

connection with the continuously decreasing distance to the target. The per-

turbation due to the movements of the target is also a nonstationary random

function of time in the general case. Finally we encounter a case when a non-

stationary linear system is subjected to two nonstationary effects.

For statistically independent effects v(t) and fx(t) the miss dispersion

may be determined by means of equation (2.55). In this case n = 2; Rxl(tl,t2)

is the correlation function for v(t), Rx2(tl,t2) is the correlation function for

fx(t); kl(t,T ) is the pulse transfer function of the system for the noise v(t)

and k2(t,T ) is the pulse transfer function for the perturbation.

If simultaneously we take into account the nonzero initial conditions (ini-

tial miss) and perturbations, the miss dispersion should be computed by me_ns of

equations similar to (2.57) and (2.58). These calculations are rather cumber-

some. They are further complicated if we take into account the fact that the

actual missile control systems are usually not linear. The principal effect on

the value of the miss will be produced by nonlinearity of the limiting type.

The difficulty of computing the dispersion and the mathematical expectation

of the miss forces us to use different simulation methods for determining the

probability nature of miss or the hit accuracy. Let us consider briefly the

simulation techniques. In this case the model of the system (whether it is

purely mathematical or of a hybrid type) should be subjected simultaneously to

all the random signals whose effect must be investigated. We must provide for

a coincidence of the probability characteristics of these signals with the

characteristics of real random perturbations which will act on the missile during

its flight. After this, the firing of the missile is simulated many times for

random combinations of initial conditions and possible target movements. As a

result the miss is determined for each simulation process, i.e., the minimum

flight distance of the missile from the center of the target. Depending on the

nature of the detonator used in the missile, the miss may be represented by two

or three coordinates. For the case of an impact detonator the miss is charac-

terized by two coordinates in a plane perpendicular to the trajectory of the

missile in the region of the target. If the target is on the surface, the dis-

persion for the impact detonator must be considered in the plane which coincides

with the surface of the Earth. For a proximity fuse the miss is determined by
three coordinates.

As an illustration let us consider the simpler case of a missile with an

impact fuse. Let us assume that n firings have been performed by the simulator_
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and that the coordinates (xl,Yl) , (x2,Y2) , ... (Xn,Yn) of n flight points of the

missile through the above plane have been recorded. The origin of the coordi-

nates coincides with the target, while the axes are situated in the plane in

which the dispersion is determined in the following manner: the x-axis lies in

the firing plane, while the y-axis is perpendicular to it. The results of simu-

lating the firings may be represented graphically as shown in figure 16.5.

0

• :0 o •

* (xL,)'J

Figurel6.5. Graphic presentation of results obtained by

simulating firing.

We assume that the dispersion of guided missiles is subject to the normal

distribution law, as in the case of unguided missiles. This assumption is based

on the fact that a deviation of the impact point of the missile from the center

of the target is assumed to be _e to the combined effect of a large number of

relatively insignificant and indep_ ndent factors. This situation is responsible

for the normal distribution law describing the probability of random quantities.

We shall also assume that the coordinate axes selected above are the principal

axes of the dispersion ellipse. In a coordinate system of this type the abscissa

and the ordinate of the flight point of the missile through the target plane are

independent random quantities, and their distribution law is determined by 4

parameters: by the coordinates of the dispersion ellipse center mx and my and

by dispersions _x and _. These parameters are computed by means of the follow-
d

ing equations.

l_I l=1

III. x -- "p lily = -- "l
ll n

)_ (xl -- rex) 2 (vi -- %,)_"

x n--I ' Y n.--I

When we evaluate the results of the firings we must use the concept of the

probable deviation E instead of the root-mean-square deviation a. For the

normal distribution law, these parameters are associated by the following re-
lation

E = 0.675_.

it is necessary to carry out a very large number of simulated firings (of

the order of several hundred) to obtain a sufficiently acex_rate evaluation of
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missile dispersion. If the result of the simulation indicates that the ce_ter
of dispersion ellipse of the missile is at a considerable distance from the tar-
get, this points to somedefects in the control system or defects in the proposed
_idance method. Both of these causes must be established and eliminated. If,
on the other hand, the root-mean-square or the probable deviations of the missile
exceed the allowable limits, the s_gnal circuit must be provided with additional
elements, which decrease the effec of randomperturbations on the flight of a
guided missile or which vary to someextent the parameters of individual ele-
ments of the missile control system.

16. 3 External Missile Guidance Systems

External missile guidance systems are quite diverse. They are considerably
more diverse than the homing guidance systems. The external guidance system may
include a homing guidance system for guiding the missile along the terminal re-
gion of its projectory when it approaches a target. Figures 16.6, 16.7 and 16.8
show three variations of external guidance systems for antiaircraft missiles.
Figure 16.6 showsa missile guidance system using a beamcoincidence method. The
coordinates of the target (azimuth, the elevation angle _target elevation and

range) are determined by a special radar which operates as an automatic tracking
device. Guidance is achieved by the guidance radar. The latter produces a sig-
nal aboard the missile for the lateral deviation from the equisignal zone of the
radio beam.

_metarget is tracked by meansof radar signals which are processed by the
computer. The computer introduces a correction for the parallax which occurs
because the tracking radar is separated from the guidance radar. Whenthese two
radars are sufficiently close together the parallax becomesinsignificant and
the need for a computer disappears. In this case the guidance antenna is locked
onto the tracking antenna.

l--guidance radar

2--_ target guidance

3--computer

4--radar target sight

5--_ target elevation.

Figure 16.6. First version of missile external guidance system.

Figure 16.7 shows a system with 2 radars for tracking the target and the
missile. _ne coordinates of the target and the missile (azimuths , elevation
angles and ranges) are measuredby radars and are fed to the computer. The

531



Impact point of missile
and target

T • _< "'/

/', g\_ .
._/-?-, . 1.I\ .

. 7" H."VC

3

Figure 16.7-

1--radio remote control link

2--radar target sight

3--computer

4--radar missile sight

5--radio remote control link

transmitter.

Second version of external missile guidance system.

computer develops the control commands, which are transmitted to the missile by

the radio control link. The computer makes it possible to realize any method

for guiding the missile to the target: pursuit, superposition, parallel ap-

proach, etc. Figure 16.7 shows the method of parallel approach. In this method

the radio link is used to transmit two components of the angular velocity vector

of the line joining the missile and the target obtained by the computer, or such

values of pitch and course angles of the missile for which _ becomes equal to O.

The two external guidance systems which we have considered have a short

range. The range is increased by using a search radar to determine the coordi-

nates of the target and the missile. The antenna of this search radar rotates

with a constant angular velocity _. Figure i6.8 shows the system with the

search radar. In this radar, the discrete values for the coordinates of the

target and the missile are recorded periodically. These coordinates are fed to

the computer, which generates the control signals and transmits them over the

radio link to the missile. In this case the control system is a sampled-data

system. Some of the special features associated with the dynamics of sampled-

data guidance systems were described in Chapter 14. It is not possible to guide

1--radar

2--computer

3--radio remote control

link transmitter

4--radio remote control

link.

11_Impact point of

T _ I missile and target

_*" \ I
/\ . CI

'\ "i

Launch

Figure 16.8. Third variation of external missile guidance system.
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the missile _Ii the way to the target by this method because of the low accuracy
in determining the coordinates by meansof the search radar. Indeed, if we
assume, for exsmple, that the radar beamhas a width of 0.2°, then the position
of the target at a distance of 300 kmwill be determined with an accuracy of 1.0
_m. In this connection the search radars are used to guide a fighter plane,
which maybe piloted or pilotless. The commandsfrom the computerguide the
fighter to the region of the target where the latter can be captured either by
radar equipment aboard the fighter plane or by meansof a sight carried aboard
the fighter plane. After this, the target is attacked with antiaircraft gun-
nery or with guided or unguided missiles. Pilotless fighters usually use guided
missiles. A pilotless fighter maytherefore be called a two-step guided missile__

In considering the accuracy of guiding missiles we shall limit ourselves to
the case whenthe missile is guided by a radio beam(fig. 16.9). The special
features of this method, which is associated with a direct measurementof the
signal produced by the linear deviation from the equisignal zone, make it pos-
sible to evaluate the accuracy of guidance by using the theory for the accuracy
of conventional stationary tracking systems or servomechanisms. In this case it
is possible to evaluate the dynamic accuracy of guidance and the accuracy in the
presence of perturbations associated primarily with the fluctuations of the equi-
signal zone. To evaluate the dynamic accuracy of guidance, it is necessary to
determine the time function Z3 = Z3 (t), in equation (11.14).

Target trajectory Vtarget

Instantaneous position
of missile

Point of collision
with kinematic
trajectory

Dynamictrajectory

c trajectory

V Control point

Figure 16.9. Guidance o__ missile by radio beam: _-_leviation
from equisignal zone; OK--deviation from kinematic trajectory;
CK--_Kinematic

Figure 16.9 showsthe instantaneous positions of the equisignal zone and
also the kinematic and dynamic tralectories of the missile. From the figure it
is clear that the deviation of the missile from the equisignal zone e is not
equal to the deviation from the dynamic trajectory from the kinematic trajectory
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CKinematic" We can judge the miss of the missile from the values e and _K,

taken at the instant of time when the missile impacts the target. It is clear,

however, that neither ¢ nor CK taken at this instant of time represent the true

miss, but differ little from it. To obtain a refined value for the miss it

would be necessary to write the beam guidance equations as a variation of homing

guidance with a lead angle (see Chapter 14). However, in this case it would be

impossible for us to estimate the misses by using the theory for the accuracy

of stationary systems and, what is most important, to use this theory for the

synthesis of the missile control system.

As we have pointed out in _m_...._er _,,_ to determine the accuracy by means of

error cK we must first determine the normal acceleration along the kinematic

trajectory as a function of time j = j(t). Error _K is computed as resulting from

perturbation j(t), applied at a point in the functional diagram where the normal
acceleration is recorded.

Let us consider the simplified functional diagrams shown in figure 14.12.1

For simplified equations and functional diagrams it is assumed that the angles

of attack of missiles with cruciform wings and plane wings are proportional

(without delay) to the deflection of the controlsurface, or to the total output

signal of the compensating network. For the lateral motion of a missile with

plane wings, the simplification consists of assuming the same relationship be-

tween the tilt angle and the output signal of the compensating network. Since

the force normal to the trajectory is proportional to the angles of attack and

tilt, the output of the compensating network in the simplified drawings will be

at the same point where the acceleration is recorded. Figure 16.10 shows simpli-

fied functional diagrams: the diagram with a series compensating device (fig.

16.!0a) and the diagram with series and parallel compensating device (see fig.

16.10b, also Chapter ii). The parallel compensating device indicates that there

is feedback in the course signal or in the signal for the velocity of lateral

deviation #. First, let us determine error CK produced by perturbation j(t) for

the diagram in figure i6.10a. When x(t) = 0, output y is equal to cK with a re-

versed sign. Therefore 2

where

I

-p_ .= -+ (p)i(0,

T2p -_- 1 . (T_ -_- 1)p3

1In these diagrams ZB(t ) is designated by x(t).

2The transfer functions in this case may be written more conveniently as func-

tions of the argument p = d/dr.
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is the transfer function of the open loop.

Substituting W(p) into the expression for CK' we obtain

(T_p-I-I)p (16.6)
a_ = T=p_-1- p3 ._. kTxp2_ I_(T_q -1-k) p -]- q ] (l).

To reduce perturbation j(t) to the input, i.e., to find an x(t) which would

lead to the same error, we write the expression for the error at input x(t). As
we know in this case

• ICt) .

Figure 16. i0. Functional diagram of external guidance system.

a--with series; b--with series and parallel compensating de-

vices; c--transformed diagram b.

or

Comparing expressions (16.6) and (16.7) we note that for this diagram

t't

o o
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Now let us determine the error and the equivalent action x(t) for the dia-

grs_ in figure 16.10b. As in the previous case for error _K, it is necessary to

find output y due to perturbation j(t). It is more convenient to do this by

using the transformed functional diagram shown in figure 16.10c. From this dia-

gram we find

l

p__. = j(01+ _v,(p) (i6.8)

where

IF_ (_) --_p'-+ kp-I-q
pS • " I

and

P (i6.9)_,= i (0.
p3+ rp2 + kp+ q

The error in reproducing the input signal x(t) for the diagram shown in

figure lO.!6b is

and

1
_,= • x (0, (16.10)

I + W_ (p)

kp+q (16.11)
W2 (P) O_+ r)p_"

We note that the transfer functions of the open loop system for the basic

and transformed functional diagram (fig. 16.10b) are different, see equations

(16.8) and (16.11). Substituting the equation into (16.10), we find

_. = (P + ') P_" •x (t). (16.12)
p_ -}- rp _ -_ kp q- q

Comparing equations (16.9) and (16.12), we find that j(t) and x(t) are re-

lated by the operator

x (0= _ i (t).-
P' -t- rp

in other words, when j(t) is known, function x(t) may be obtained from the

solution of the differential equation

+ r_ = j(0.

The expressions which we have derived for the errors may be used to compute

these after function j(t) is obtained from the investigation of the kinematics.
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Ye c_u see from expressions (16.2) and (16.5) that the integral of the signal

error in the control law (the coefficient q) makes the error equal to 0 when the

acceleration is constant, i.e., when flight takes place along a circular kine-

matic trajectory. If, on the other hand, we let q = 0 in these expressions,
them a constant acceleration will lead to a stable error. Since the duration

of the transient process associated with placing the missile on the beam, as a

rule, is less than the flight time of the missile until it meets the target,

the dynamic error may be computed by means of the error coefficients. In this

case the operational transfer functions in expressions (16.6) and (16.9) or in

equations (i6.7) and (16.12) should be expanded in the power series of p, if

x(t) is determined, i.e., it is necessary to represent the equalities (16.6)

and (16.9) in the form

_ = (%-t- c,p + cy- + ...) i (t) =

d] d'] q_.. .= [ co] (l) -k, c_--_--]- c2-_- .]

_men q _ O, the error coefficient cO = 0 and, conversely, when q = 0, the

error coefficient is cO - i (for the functional diagram in figures 16.10a and b)k

Now let us compute the dynamic error c, which represents the deviation of

the missile from the equisignal zone of the radio beam. In Chapters ii and 14

we considered the equations of motion of a missile with respect to a stationary

beam or with respect to a beam which moves parallel to its initial position.

in the present case (the guidance of antiaircraft missiles), the equisignal zone

of the beam rotates with a certain angular velocity _= L(t) (fig. 16.11). There-

fore, it is sufficient to consider the equation of kinematic coupling, the third
equation in system (ii.i).

Turning to figure 16.11, we write the expression for the total derivative

of the deviation y or of the error _ for a small angle e - _:

/540

or

d--z'J: (o-- _,)v - L_.
dt

'_--_-----VO q- [ (t), (16.13)dl

where f(t) equals -VL -L_ is the perturbation which occurs when the missile

moves along a curvilinear path.

Function f(t) is computed by investigating the kinematics of guidance,

which gives us the law for the angular displacement of the beam L= L(t) and the

distance from the guidance point to the projection of the missile on the in-

stantaneous position of the beam. We may assume approximately that L(t) = Vt.

Equation (16.13) shows that in the functional diagrams shown in figure

16.10 the perturbation for f(t) is applied at the point where the derivative
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dy/dt is recorded. On these functional diagrams the reactor f(t) is designated

by a broken arrow to emphasize the fact that we cam consider the acting per-

turbation j(t) or f(t).

Let us" write the expression for the error in the functional diagram of fig-
ure 16.10a

1

p (T..p -I- I) p"-I (t) (16.14), - I(0=
I -I- W (p) p3 -t- • • • q- (T:q + k)/, -I- q

/541

±o.ioband for the diagram in figure _ _ ^

1

*- P /(0 := I(0. (x6.x5)
1 + W 2 (p) pa __. rp"- -_- kp -{- q

Comparing expressions (16.14)and. (16.15), we note that when £(t) is a linear

function of time a stable error does not occur in the diagram of figure 16.10a,

while in the diagram of figure 16.!0b it does occur. This is due to the fact

that the feedback signal in the diagram is picked up before the point where the

perturbation is applied. The feedback signal picked up at this point means that

the control law contains a signal proportional to the angle e. We can substan-

tially reduce the value of the steady-state error, if we introduce a programed

signal %= %(t) in the feedback loop. As far as the coupling between the perturba-

tion f(t) and the equivalent input signal x(t) is concerned, the following expres-
t

sion will be valid for both diagr_s x(1)_[(1)dl.

0

v

• 0-X

_]_ 7-/'-/777Z]1/ . ]///Z///i

Figure 16.11. Geometry of guiding missile by means of beam.

_ne miss of a missile guided by a beam depends not only on dynamic errors,
but also on the fluctuations of tL:= equisignal zone of the radio beam. _r_e

fluctuations of the equisignal zon.: are produced bY the fluctuations in the sig-

nal reflected by the target and by noise in the transceivers of the system.
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Fluctuations of the equisignal zone represent noise which is applied at the in-

put of the functional guidance system. Thus, a sum consisting of the useful

signal x(t) and interference v(t) t_ct at the input of the guidance system. In

this case x(t) as well as v(t) must be considered as random functions of time

in the general case.

As a rule the random function _(t) may be considered stationary. If the

:arget flies with a constant azimuth and the control point for the antiaircraft

missile is situated along the projection of the target trajectory and the

Earth's surface, the beam will move in one plane. In this case the miss com-

ponent of the missile normal to th,:_beam displacement plane will depend only on

the fluctuating noise 2(t). When _;he random function v(t) is stationary, the

root-mean-sGfaare value _of this miss component is computed by means of the fol-

lowing equation

= iI*u,,lr=,(,od%
0

where S _(w) is the spectral density of the noise v(t), and _(]_) =

is the transfer function for the closed loop beam guidance system.

For the diagram in figure 16.10a

W U,;)

_V(]_) = kTt(i,,,)"+ (Toq + k)]_._-q .
(T..:',_+ i)(:,o)'

while for the diagram in figure 16.10b

_,:(:o,)= k(:o,)+ q
(j_,+ :)(]_,)2

if we also represent x(t) as a stationary random function, the mean-square-

root value of the missis computed by means of the following equation

_ = 1_ (1_)I°-s. (_) d,,,+ IV.(1_)I_S. (,0)d_,
0 o

where d', (]_,_).=
1 + w(j_) is the transfer function of the errors; and Sx(W ) is the

spectral density of the signal x(t).
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If x(t) is not represented with sufficient accuracy by the stationary
random function, and if the transient processes are not dampedsufficiently well
by the action of stationary noise _(t) and of the initial conditions, we should
use the equations or the simulation methodpresented in Chapter 2 for computing
the miss.
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